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1. Introduction / Related Research 
Economic theories have been proposed to suggest that asset returns can be distilled into single or 

multi-factor models.  These factors often relate the return to the risk inherent in the asset.  The most 

famous theories include the arbitrage pricing theory (APT) of Ross (1976), and the capital asset pricing 

model (CAPM) of Sharpe (1964), Lintner (1965) and Merton (1973).  Extensions to these theories have 

included consumption based CAPM (CCAPM) models by Breeden (1989) and Lucas (1978). 

The APT is a factor model that assumes a set of factors exist that determine an asset’s rate of return.  

The rate of return for a particular asset can be viewed as compensation for the risk inherent in the asset.  

These factors are systematic (undiversifiable) factors which affect the asset’s return.  The commonly 

referred to beta coefficient explains the impact of such factors to the asset’s return.   

The CAPM model is a simplification of APT.  It is a theory of financial equilibrium only and does not 

attempt to link an asset’s return with events in the real side of the economy.  CAPM suggests that the 

appropriate measure of an asset’s risk is the beta coefficient which is defined as the covariance of the 

asset’s return with the market return.  CAPM is a single factor model that explains asset returns using 

the market risk premium. The return of an asset can be explained with two variables: the expected risk-

free return and the market risk premium.  The market risk premium is the expected market return less 

the expected risk-free return.  The beta coefficient explains the asset’s relation to systemic or market 

risk as represented by the market risk premium.  The CCAPM is an extension to traditional CAPM which 

ties the interaction of the real macro-economy and asset markets.  CCAPM suggests that an appropriate 

measure of an asset’s risk is the covariance with aggregate consumption. 

However, a theory is essentially an idea that should be refutable.  In order for an economic theory to 

be accepted as an explanation of the real world movements of the market, these theories must be 

empirically tested.  Here lies the problem, the seminal papers which provide these theories are often 

silent on how many or which variables the market participants employ.  If APT is to be tested, the risk 

factor(s) common to all assets must be identified.  For CAPM, most studies use a stock market index as a 

proxy for the market portfolio.  In the Mankiw and Shapiro (1987) paper, they compare the theories of 

CAPM and CCAPM.  In order to perform their analysis, they parameterize the models using the Standard 

and Poor’s 500 index to represent the market and the real consumer expenditure on non-durables and 

services to represent the consumption measure.  In the Chen, Roll and Ross (1986) paper which tests 

whether innovations in macroeconomic variables are risks that are rewarded in the stock market, 

among the variables the authors used were the equal and value weightings of the NYSE index to 

represent the market.  In the Connor and Korajczyk (1991) paper which investigated the risk and return 

characteristics of US mutual funds they also used the value-weighted portfolio of the NYSE stocks 

available from the Center for Research in Security Prices to represent the market portfolio.   

However, the theoretical model implied that the market portfolio includes all possible assets.  The 

same problem exists for CCAPM, where a measure for consumption must be defined.  Mankiw and 

Shapiro’s (1987) paper notes that possible objections may arise from their choice of proxy variables to 
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represent the market portfolio; this is one example which highlights the importance of selecting factors 

in both the APT and CAPM framework. 

Perhaps the most famous attempt to identify factors to explain stock returns is by Fama and French 

(1993).  In their paper they extended the CAPM model by adding two observable risk factors; the small 

minus big (SMB) factor and the high minus low (HML) factor.  The SMB factor mimics the risk in returns 

related to size and the HML factor is meant to mimic the risk related to the book-to-equity measure of 

stocks. 

Some economists argue that it is impossible to test asset pricing theories.  Richard Roll’s (1977) 

famous paper postulates that the market portfolio cannot be identified as the exact composition of the 

true market portfolio is unknown.  This implies that CAPM is not-testable unless all individual assets are 

included in the sample.  He further argues that most reasonable proxies will be highly correlated with 

each other and the market portfolio and that this correlation will make it seem that the exact 

composition is unimportant, whereas it can cause quite different inferences.  From the plethora of 

research, it is clear that identification of factors is important in the explanation of financial assets. 

Even though there have been noted issues with beta factor models, finance practitioners continue 

to use the models for two reasons: risk measurement and portfolio selection.  Estrada and Vargas’ 

(2011) paper investigates the risk measurement premises by determining whether high-beta portfolios 

of countries and industries fall more than low-beta portfolios when exposed to large market declines.  

They also explore whether beta is a valuable tool for portfolio selection.  Using data spanning 47 

countries, 57 industries, and four decades they determined that beta is a useful measure of risk in the 

sense of accounting for exposure to the downside, and in particular, to large and unexpected market 

declines.  They also test an investment strategy that reacts to large unexpected market declines by 

investing in high-beta portfolios, and to large positive market increases by investing in low-beta 

portfolios and conclude that their beta-based strategy outperforms a passive investment strategy.  

Estrada and Vargas conclude that beta is a valuable tool for portfolio selection. 

Recall that a beta model framework, such as CAPM, is used to relate the return of an asset to the 

risk associated to the market portfolio which includes all investable assets.  Often, a particular stock 

market index such as the Dow Jones Industrial Index is used as a proxy for risk associated to the market.  

The determination of the betas of a common factor for the multiple stock indices and the common 

composite market index is an increasingly important issue as more investors are able to invest in 

diversified portfolios across stock exchanges both locally and internationally.  Investors are now able to 

readily invest in assets which span different countries and industries through instruments such as low-

cost funds and exchange traded funds.  The individual stock index betas of the common factor will allow 

investors to determine the risk exposure of the composite market index, enabling investors to 

understand which regions or industries or assets are more risky. 

The contribution of this paper is to attempt to determine a single factor for a broad set of market 

indexes which can in turn be used in simple CAPM framework for stock index returns.  Specifically, this 

paper attempts to identify the existence of a risk factor that is common to multiple stock indices.  
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Similar work has been performed by Vansteenkiste (2009) where commodity prices were analyzed.  

Using a dynamic factor approach, she was able to separate common and idiosyncratic developments of 

commodity prices.  She also concluded that over time the common factor has recently become more 

important in explaining the movements of commodity prices.   

With the increasingly globalized world, the transmission of shocks from one stock market can rapidly 

occur.  Such co-movements in different stock indices have important implications for setting economic 

policy.  Furthermore, the determination of a common risk factor is an important consideration for many 

portfolio diversification techniques.   

Following the analysis of Vansteenkiste (2009), this paper will analyze whether idiosyncratic factors 

or a coinciding of individual stock index shocks have been driving the stock market returns.  The 

coinciding factor is the estimated beta coefficient on a common factor for the stock indices.   To 

accomplish this, we will use a dynamic common factor model to analyze the significance of a common 

factor to explain the major North and South American stock index returns.  While the stock markets and 

the related indices may have slightly varied operating hours, and different geographic locations, they do 

have a degree of operating overlap.  Therefore, there is a degree of logic that the movements in these 

stock indices will be affected by a common factor.  With the results we can also utilize a rolling-window 

analysis to determine how the significance of the common factor for each stock index changes over 

time.  In addition, we will compare the betas of individual stocks from their standard stock indices 

against the betas associated to a common composite index.  We will also test the assertion that 

overlapping operating hours is an important factor by constructing a dynamic common factor model 

which includes indices from North America, Europe and Asia. 

In this paper, we argue that the dynamic common factor framework is helpful and provides 

additional information compared with using an existing composite index or using a leading eigenvector 

in principle component analysis.  The dynamic common factor model using a Kalman filtering technique 

estimates an unobservable common factor which can be loosely interpreted as an across-exchange 

market composite index with suitable scaling.   

The various individual exchange composite indices such as those offered by MSCI can be used as a 

“market” risk factor to explain the returns of particular stock indices.  Such composite indices are 

constructed along various guidelines such as country, size, sector, etc.  These indices are created from 

the inclusion of individual assets and weighting them accordingly.  The use of a dynamic factor 

framework allows us to include the specific regions or indices to construct a custom composite index 

which allows for a broader and more general risk analysis against comparisons of an individual stock, 

portfolio or index. 

In comparison to using a leading eigenvector principal component analysis (PCA), the dynamic 

common factor model allows for measurement of the co-movement of time-series data and accounts 

for the evolution of the common and idiosyncratic components.  The PCA approach has two differences.  

First, the approach relies on the determination of eigenvectors and value of the covariance matrix.  The 

covariance matrix and the co-movement of the data extract the contemporaneous correlations of the 
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data series, ignoring the time-series component.  Therefore, the dynamic factor model may dominate if 

there is even a slight persistence to the indexes.  Secondly, using the leading eigenvector in a PCA 

analysis reduces the dimensionality of the data.  Since PCA wills us to express data in terms of the 

patterns between each data set; only using the leading eigenvector to transform the data will remove 

the contribution of the other eigenvectors.  Should persistence exist, the use of a dynamic factor 

framework will allow us to explain the co-movements and determine the impact from each individual 

data set.  However, should the expected returns of the common factor exhibit low persistence, the 

common component could be very close to the principal component leading eigenvector. 

The use of a dynamic common factor framework will allow for the construction of broader beta 

models that will allow individual stocks to be gauged against a full cross-market option.  As alluded to in 

the comparison against an existing composite index, the dynamic factor framework will allow 

practitioners to estimate a common factor which could be interpreted as a market composite index 

customized to what they perceive as market risk.  The resulting analysis will allow the practitioner to 

interpret the risks by determining which portion of risk is common to all markets and which portion is 

specific to a particular market.   

The results of this paper show that there exists a significant common factor or market composite 

index which accounts for a portion of the logarithmic daily returns for each stock index.  We also reject 

the null hypothesis that impact coefficients are jointly zero, which suggests that the common factor 

accounts for a portion of the returns for all indices.  In other words, there is a degree of co-movement of 

the stock indices attributed to the common factor.  Due to the identifying orthogonality restrictions 

placed on the model, economic interpretation of the coefficients is provided through a variance 

decomposition.  The analysis shows that the common factor’s variance accounts for at most 50% (US 

indices) of the overall variance.  A rolling two-year correlation with the common factor is also performed 

and the results show that over the sample period the correlation has increased.  The analysis for 

individual stock’s beta showed that using a standard index (SP500 or NASDAQ) overstates the impact of 

the standard index as compared to the common composite index.   

When the model was applied to include North American, European, and Asian indices, the variance 

decomposition showed that the percentage of variance accounted for by the common factor is 

geographically grouped, with a higher percentage for those indices which overlap in operating hours.  

This suggests that when indices overlap their common factor beta is higher. 

The empirical work is primarily conducted with daily data from April 28, 1993 to December 31, 2010, 

for Standard & Poor 500, NASDAQ, Russell 2000, S&P/TSX, BOVESPA, and IPC indices and expanded with 

the FTSE, DAX, Hang Seng, and Nikkei 255 indices.  Section II describes the econometric theory behind 

the dynamic factor analysis.  Section III describes the data sources, modifications to the data, and tests 

to determine the time-series data has desirable qualities for analysis.  Section IV describes the results of 

the dynamic common factor analysis.  Section V concludes the paper and provides a discussion of 

possible extensions to the research. 
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2. The Statistical Model 
The dynamic common factor model is applied to the time-series stock index data using Kalman 

filtering techniques.  This methodology is commonly used in the world business cycle literature.  

Examples of this include papers by Gregory, Head and Raynauld (1997), Stock and Watson (1989), and 

Stock and Watson (1991).  In general, as described in Lütkepohl (2005) the dynamic factor models 

represent a vector of   endogenous observable variables,     as linear functions of     unobserved 

common factors,   , and some idiosyncratic components,   .  In some models there are no idiosyncratic 

terms.  

The model can be represented as: 

           

where   is a         matrix of factor loadings and the components    are assumed to be uncorrelated, 

that is, the covariance matrix of    is diagonal.  The unobserved factors,     and the disturbances,     in 

the equations for the observed variables may follow vector autoregressive structures.   

The advantage of the dynamic factor model is the ability to measure the co-movement of the 

variable with time dependencies, as opposed to just the contemporaneous correlations using a PCA 

analysis.  In addition, the analysis distinguishes between the idiosyncratic component and the common 

component as the source of the time-series co-movements.   

The approach analogous to the CAPM with a single index is the use of capturing the co-movements 

in the indices are a common risk factor that can be captured by a single latent variable.  Since the model 

is linear in the unobserved variable, the Kalman filter is used to construct the Gaussian likelihood 

function, which allows us to estimate a composite market index which is a composition of all stock 

indices included in the analysis.  This estimated composite market index is the common risk factor which 

explains the co-movements of the stock indices and a portion of their returns. 

2.1. The Dynamic Common Factor Model 

To describe the dynamic common factor model, we will reference the framework and approach 

adopted by Stock and Watson (1991).  In their paper, they wrote a macroeconomic model as a dynamic 

common factor model, estimated the parameters by maximum likelihood, and interpret the unobserved 

factor as a leading economic indicator.  In their description of the model, they describe the “single 

index” model, its state-space representation, and the estimation of the likelihood function using the 

Kalman filter; we will also follow this format.   

For our description of the dynamic common factor model, we will use the following notation.  Also, 

refer to section 3 for a full description of the data.  There are   stock indices, indexed by   individual 

stock indices.  There are   time periods indexed by  , which represents the index’s return at date  .   

The variable      is the logarithmic stock index i daily return.  Additional discussion of the data and 

stationary tests will follow in the data section.  Each variable      at time t can be decomposed into two 

stochastic components: the idiosyncratic component,     , and the common component,  .  The 
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idiosyncratic component represents movements which only impact the individual stock index.  The 

common component is the latent time-series variable which can also be viewed as a composite market 

index for all stock indices included in the analysis.  Both the common and the idiosyncratic components 

will be modelled as having autoregressive processes of order   and   respectively.  Percentage returns 

are the variables of interest and the model is represented as: 

(1)                             (  = 1,2, ...,  )  

(2)                                                                                           

(3)                                            (  = 1,2, ...,  )  

The above equations are modelled with several identifying assumptions to ensure that the co-

movement of the multiple time-series stock indices arises from the common factor   .    First we assume 

that the innovations,     , are mutually uncorrelated with each other at all leads and lags for all (  = 1,2, 

...,  ).  Secondly, as mentioned above, we also assume the covariance matrix of      is diagonal. 

                                        

and 

  
  

    
                    

     
      

   

Additionally, we normalize the scale of    by setting   
    .  

2.2. State Space Representation 

In order to estimate the unknown parameters and extract estimates of the unobserved variable,   , 

we need to first transform equations (1) – (3) into state space form so that the Kalman Filter can be used 

to evaluate the likelihood function.   

The basic idea, as described in Lütkepohl (2005), is that there exists an observed time series 

           which depends upon an unobserved state variable    which is driven by a stochastic 

process.  The relation between    and    is described by the measurement equation: 

(4)                                                                                           

where    is a matrix that also depends on the period of time,  , and    is the observation error.  The 

state vector or state of nature is generated as: 

(5)                   

This equation is called the transition equation because it describes the transition of the state of 

nature from period     to period  .  The system of equations (4) and (5) is one form of a state space 

model. 
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In our model, the measurement equation refers to the observed stock market indices or variables, 

    . This equation relates the individual stock indices to elements of unobserved state vector which is 

the common risk factor or composite market index and comprised of   ,     and associated lags.   

We start by obtaining the state or transition equation by combining (2) and (3) into the general 

standard state space form.  We represent the variables          ,     ,   , and    as vectors   ,   , 

      and     : 

(6)          

(7)              

where: 

  = (  
     ) 

      
     ) 

The matrix   denotes the time-invariant transition matrix and  , and   denote the selection matrix.  

We denote the diagonal variance-covariance matrix of    as  .  The above discussion was provided in 

general terms for an in-depth understanding of the methodology; refer to the results in section 4 for an 

example of the matrix and state-space notation as it relates to the stock indices. 

2.3. Estimation 

Once in the state space form, the Kalman Filter provides the means of updating the state equation 

as new observations become available.  Predictions are made by extrapolating these components into 

the future.  Therefore, the Kalman Filter consists of two sets of equations to estimate the model: the 

prediction equations and the updating equations.  As described in Lütkepohl (2005), the Kalman Filter 

recursively estimates the states,   , given observations,   , of the stock index.  Under normality 

assumptions, the estimator of the state produced by the filter is the conditional expectation 

            .  The Kalman Filter also provides the conditional covariance matrix                

which may serve as a measure for estimation or prediction uncertainty.  For     the estimator 

            is a forecast at origin T.  The computation of the estimators                      is 

called filtering which distinguishes it from forecasting. 

Let       denote the estimate of    based on information         ), 

                                
 
   and recall that the diagonal variance covariance matrix of    is 

 , then the two prediction equations are: 

(8)                  

(9)                  
        

We define the forecast error of the measurement equation (8) as                  and its 

variance-covariance matrix as           
            .  The updating equations of the Kalman Filter 

are: 
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(10)                    
   

     

(11)                    
   

          

Given initial estimates of T, R,  , and Z and starting values for        and           

               , the Kalman Filter equations (10) – (13) allow for recursive calculations to predict 

the state vector        and covariance matrix       . 

The Gaussian log likelihood is then computed as: 

(12)   
 

 
    

 
     

     
 

 
             

 
    

The Gaussian maximum likelihood estimates of the parameters are fond by maximizing   over the 

parameter space. 

3. Data 
3.1. Stock Indices 

The following table describes the individual stock indices included in the dynamic common factor 

analysis: 

Table 1 : Stock Indices and Stock Exchanges

Stock Index Country Exhanges Time Zone Hours of Operations

SP500 Standard & Poor 500 USA NYSE & NASDAQ UTC -5:00 9:30 am to 4:00 pm EDT

NASDAQ Nasdaq Composite USA NASDAQ UTC -5:00 9:30 am to 4:00 pm EDT

RUT Russell 2000 Index USA NYSE & NASDAQ UTC -5:00 9:30 am to 4:00 pm EDT

TSX S&P/TSX Composite Index Canada TSX UTC -5:00 9:30 am to 4:00 pm EDT

BOVESPA BOVESPA Index Brazil BM&FBOVESPA UTC -3:00 10:00 am to 5:00 pm BRT

MXN Indice de Precios y Cotizaciones (IPC) Mexico Mexican Stock Exchange UTC -6:00 8:30 am to 3:00 pm CDT

 The Standard & Poor 500 (SP500) Index was first published in 1957 and includes 500 leading 

companies in leading industries of the US economy.  The SP500 focuses on the large capitalization US 

equities market segment and covers approximately 75% of US equities.   

The NASDAQ Composite Index was launched in 1971 and is a broad based index.  The index 

includes over 3,000 securities which is the most of any US market index.  Also, the index on average, 

trades more shares than any other US index.  The NASDAQ includes companies in all areas of business 

including technology, retail, communications, financial services, transportation, media and 

biotechnology.  The index is calculated under a market capitalization weighted methodology. 
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The Russell 2000 Index measures the performance of the small-cap segment of the US equity 

universe. The index is a subset of the Russell 3000 Index representing approximately 8% of the total 

market capitalization of that index. It includes approximately 2,000 of the smallest securities based on a 

combination of their market capitalization and current index membership. The index is constructed to 

provide a comprehensive and unbiased small-cap barometer and is completely reconstituted annually to 

ensure larger stocks do not distort the performance and characteristics of the true small capitalization 

index.  

 

The S&P/TSX Composite Index was established in 1977 and is an indicator of market activity for 

Canadian equity markets.  The index is capitalization weighted, covers approximately 95% coverage of 

the Canadian equities market, and is the primary gauge of the Toronto Stock Exchange listed companies. 

 

The Bovespa Index (Ibovespa) was established in 1968 and is the main indicator of the Brazilian 

stock market’s average performance.  The index is a gross total return index weighted by traded volume 

and is comprised of the most liquid stocks traded on the Sao Paulo Stock Exchange. 

 

The Mexican IPC index (Indice de Precios y Cotizaciones) was established in 1978 and is a 

capitalization weighted index of the leading stocks traded on the Mexican Stock Exchange. The index 

was developed with a base level of .78 as of October 30, 1978. 

 

3.2. Data Modification 

The stock indices time-series data is the publicly available daily adjusted closing price, henceforth 

referred to as the closing price, from Yahoo Finance.  The data was selected on the basis of public 

availability of the stock market indices and regional overlapping trading hours.  For the dynamic 

common factor analysis the date range of April 28, 1993 to December 31, 2010 was used.  The date April 

28, 1993 is the first date where data was available for all six stock indices.  It is necessary for the 

measurement of the data-series co-movement to ensure that all exchanges trade at the same time, to 

allow for common stock index movement.  This is also confirmed by the stock exchange time zone and 

hours of operations in Table 1.  Although, allowable trading periods do not line up exactly, for the 

majority of hours the operational hours overlap.  This allows us to discern whether there exists a 

common factor to link all the indices returns. 

Since the goal is to determine what proportion of index returns are from a common factor, a 

logarithm of the closing price was calculated.  This allows us to determine the logarithmic daily return 

for each index by taking the first difference of each time-series.  Also in section 3.4, we will show that 

first differencing is a necessary step to ensure the data is stationary. 

Additionally, indices with missing closing prices, for a variety of reasons not investigated, were filled 

in with the previous day’s closing price.  This ensures that when the markets re-opened the return 

calculations are not comparing against zero for the previous day.  For example, following the September 

11, 2001 terrorist attacks the SP500 and NASDAQ indices did not trade for the period from the 11th to 

the 16th, reopening on the 17th.  For the dates September 11 to 16, the closing price from September 
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10th was used; therefore, the return calculation for the 17th would correctly compare against the 

previous close on September 10th. 

3.3. Normalization 

For each stock index, the logarithmic daily return time-series was also normalized by subtracting the 

sample mean and the variance was standardized to one.  This is a necessary step to ensure that each 

stock index receives equal weighting when the dynamic common factor analysis is conducted.  If the 

data is not normalized, the estimation procedures will assign those stock indices with higher variances 

more weight.  Since we do not have a reason to give one stock index a different weight the 

normalization ensures that each data series is treated equally. 

3.4. Stationarity / Unit Root Testing 

The dynamic factor model and likelihood theory used here requires the data to be stationary. A 

weakly stationary process has the property that the mean, variance, and autocorrelation (AC) structure 

do not change over time.   

Data which is integrated has a unit root of 1 and is considered a non-stationary process.  In order to 

determine whether each data set is stationary, they need to be individually tested.  To accomplish this 

we will use the Augmented Dickey-Fuller (ADF). 

The ADF test is applied as follows:  

        

        

                                   

Failure to reject the unit root is taken as evidence that a unit root is present, that is,     

In order to use the ADF test, the lag length,  , needs to be determined.  We applied the 

selection approach using the Schwarz's Bayesian information criterion (SBIC).  In applying the ADF test, 

we first applied the test on the data series of the daily closing price time-series data for each stock 

index.  The results indicated that all indices except for BOVESPA were non-stationary; therefore, first-

differencing or using stock index return data is most appropriate.  The results indicating that the 

logarithmic returns or first-difference stock index data is appropriate are as follows: 
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Table 2 : First Differenced Augmented-Dickey Fuller Test Results

Stock Index SBIC Optimal Lags ADF Test Stat.

SP500 -6.34212 2 -102.381 ***

NASDAQ -5.73677 1 -118.754 ***

RUT -6.04563 2 -66.359 ***

TSX -6.52216 1 -102.963 ***

BOVESPA -4.91529 1 -79.082 ***

MXN -5.75481 2 -59.24 ***

*     significant at the 10% critical value

**   significant at the 5% critical value

*** significant at the 1% critical value

  

As the ADF test statistic is rejected at a 1% significance level, a unit root is not present and the 

logarithmic returns for the indices are stationary. 

3.5. Potential Sources of Bias 

While the logarithmic stock market returns data are stationary, they may be biased for the following 

reasons.  Table 3 summarizes the contemporaneous cross correlations for the daily logarithmic stock 

market return data.  In general, the North American stock indices, SP500, NASDAQ, RUT and TSX, are 

highly correlated with correlations above 0.70.  The table also shows large correlations within the USA, 

as the SP500 have large positive correlations with the two other American stock indices, the NASDAQ 

and RUT.  The use of the four North American stock indices might cause a bias that the estimated 

unobserved common factor or composite market index tends to be dominated by the movements of the 

four stock indices. 

 

Another potential source of bias may be attributed to the serial correlation of disturbances in the 

observable variables.  One explanation for serial correlation is that relevant factors are omitted from the 

Table 3 : Contemporaneous Correlations of the Stock Index Returns

SP500 NASDAQ RUT TSX BOVESPA MXN

SP500 1.00

NASDAQ 0.8655 1.00

RUT 0.8634 0.8668 1.00

TSX 0.7057 0.6604 0.6767 1.00

BOVESPA 0.4719 0.4252 0.4337 0.4269 1.00

MXN 0.5719 0.5369 0.5363 0.5066 0.5221 1.00
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regression model or the autoregressive factor structure is not correctly specified.  In the strictest sense, 

if the model is correctly specified, the disturbance in the observable variables should be uncorrelated. 

4. Results 
4.1. Applied Methodology 

In order to estimate the unobserved composite market index we first transform the single-index 

model for the six indices (SP500, NASDAQ, RUT, TSX, BOVESPA, MXN) into a state-space representation 

so that the Kalman Filtering technique can be applied.   

In the estimation of the dynamic common factor we adopted a first order autoregressive 

specification for the common factor     so that    .  For the idiosyncratic portion we also adopted a 

first order autoregressive structure for     , so that    .  At this point, we note that we also tested 

various other specifications for the common factor and idiosyncratic portion1.  Based on the following 

results pertaining to the significance of the coefficients, the serial correlation of observable 

disturbances, and randomness of the innovations we decided that a simple model of AR(1) is most 

appropriate. 

Single-Index Model: 

                        (  = SP500, NASDAQ, RUT, TSX, BOVESPA, MXN)  

                                                                         

                           

With the measurement and transition equations, the Kalman Filter is used to construct the 

likelihood function and to estimate the unobserved composite market index.  The results of the dynamic 

common factor model are as follows: 

Measurement Equations: 

                            

                             

                       

                       

                               

                       

                                                           
1 We tested an AR(2) structure for both the common factor and idiosyncratic portion and noted that results were insignificant.  Also we considered the inclusion of a 
currency index which comprised of the weighted average of the foreign exchange value of the U.S. dollar against a subset of the broad index currencies but did not 
observe significant results and therefore excluded the currency index. 
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State / Transition Equation: 

                                                                                                

                             

                               

                          

                          

                                

                         

4.2. Serial Correlation of Observable Disturbances 

As mentioned in section 3.6, the serial correlation of observable disturbances is a possible source of 

bias or indicator of a poor fitting model.  In order to test model fit, a test to determine the existence of 

serial correlation in the idiosyncratic error,        will be performed. 

Let    denote the one-step ahead forecast errors from the observable variables in the single-index 

model (                                   .  That is             , where,       is 

computed using the Kalman Filter applied to an AR(1) model described in the above methodology. 

The test for serial correlation of observable disturbances is performed as an F-test of the null 

hypothesis of joint insignificance for the coefficients of the one-step ahead forecast errors: 

        

        

                           

Table 4 are the p-values from the regression of    with a,      autoregressive lag structure for the 

common factor and q   for the idiosyncratic error. 
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Based on the results in Table 4, the null hypothesis that the coefficients on the lagged forecast 

errors are zero, is rejected for approximately half the stock indices.  For the variables                

and      the results are mostly satisfactory as for the majority of the regressors the null hypothesis of 

the joint statistical insignificance of the lags cannot be rejected.  However, it can be seen that when 

               and      are used as dependent variables the null hypothesis is statistically significant. 

The results for the indices TSX BOVESPA, and MXN suggest that the disturbances in the observed 

variables are forecastable by the lagged disturbances from itself and other indices.  These results go 

against the assumption that all errors are not correlated in all leads and lags.  In particular, the TSX stock 

index’s forecasted errors show persistence in the lagged dependent variable from all indices.  This 

suggests that the equation for TSX is not correctly specified.  In an effort to determine if higher-order 

models would improve the fit of the model, we also estimated an autoregressive of order two,      

model and subjected the results to the same null hypothesis F-test.  The results exhibited the exact 

same results and therefore in the interest of a parsimonious model; we continued the analysis with an 

AR(1) idiosyncratic error structure.  

To correct for the serial correlation, one alternative is to include lags of the estimated common 

variable   , in the equation for TSX or we could increase the lag specification for     . Since the table 

suggests satisfactory results for the majority of the serial correlation test, the two suggested remedies 

are computationally very expensive, the econometrics software used, STATA, is limited in its ability to 

model custom equations, and the dynamic common factor we are suggesting is only a framework to test 

the significance of a common market factor; we will only raise the misspecification as a possible issue for 

future research. 

 

 

Table 4 : Serial Correlations of Observable Disturbances for an AR(1) Idiosyncratic Error Structure

Regressor eSP500 eNASDAQ eRUT eTSX eBOVESPA eMXN

eSP500 0.0073 *** 0.1860 0.6097 0.0000 *** 0.0469 ** 0.0000 ***

eNASDAQ 0.2016 0.3880 0.3018 0.0000 *** 0.0441 ** 0.0000 ***

eRUT 0.1435 0.6652 0.8883 0.0000 *** 0.027 ** 0.0000 ***

eTSX 0.0000 *** 0.0083 *** 0.0001 *** 0.0005 *** 0.9496 0.1686

eBOVESPA 0.5768 0.3937 0.4173 0.0000 *** 0.2302 0.0342 **

eMXN 0.8771 0.3851 0.0570 0.0000 *** 0.0000 *** 0.0000 ***

*     significant at the 10% critical value

**   significant at the 5% critical value

*** significant at the 1% critical value

Dependent Variable
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4.3. Innovations are White Noise 

In order to investigate whether the,    , lag structure is robust enough to account for the serial 

correlation in the idiosyncratic variable,       an appropriate test is conducted.  The correlations in the 

data are examined to determine whether they are significantly different from zero.  The test for 

autocorrelation is used to detect non-randomness in the data. The goal is to test whether the 

assumptions that innovations,       are white noise and random.  If the residuals are not random, this is 

evidence that the serial correlation inherent in the idiosyncratic disturbances,       are not fully 

accounted for in an AR(1) structure. Randomness in the disturbances can be determined by general tests 

called Portmanteau-tests on the following hypothesis: 

                                   

                  

The alternative hypothesis is quite general and does not distinguish between different 

specifications of AR(q).  In other words, there are a number of alternatives that could give rise to a 

rejection of the null hypothesis.  At this point it should be noted that we also tested a second order 

autoregressive lag structure,    , and noted that the differences to     were not materially 

different.  Therefore, in the interest of a parsimonious model, the results of the Portmanteau tests on 

the innovations for,     lag structure are as follows:  

 

The results in Table 5 indicates that at a 5% significance level only the NASDAQ and RUT stock 

indices have random innovations.  This type of results would suggest that further modelling beyond 

AR(2) of the idiosyncratic portion of the dynamic common factor model is necessary.  One method to 

generate better results is to model the individual stock indices idiosyncratic portions individually; 

increasing the number of lags for innovations which are not white noise.  However, due to modelling 

limitations of the STATA software, varying the lag structures of the idiosyncratic portions is not possible.  

Table 5 : Portmanteau Test for White Noise

Innovations Q Statistic Prob > chi2(12)

SP500 41.4051 0.0000 ***

NASDAQ 14.8426 0.2502

RUT 19.1552 0.0849 *

TSX 61.3476 0.0000 ***

BOVESPA 29.6701 0.0031 ***

MXN 44.2433 0.0000 ***

*     significant at the 10% critical value

**   significant at the 5% critical value

*** significant at the 1% critical value
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Secondly, increasing the lag structure for all stock indices is computationally very expensive and also not 

feasible for the purposes of this paper.  We therefore proceed with the specified AR(1) for structure for 

the idiosyncratic variable,       but raise this misspecification as an issue for future research. 

4.4. Dynamic Common Factor Model 

 
 Figure 1: Common Factor for Logarithmic Daily Stock Index Returns  

 
Figure 1 plots the estimated common factor or composite market index’s daily returns.  The 

composite index’s returns are representative of the movements of the global equity markets.  The 

returns show the volatility in the returns prior to the year 2000 and the large downward spike in 2001, 

which mirrors the technology-boom-bust recession.  The composite market index also shows the effects 

of the most recent financial crisis with the returns spiking upwards and then downwards in 2008. 

Recall that the composite market index was estimated using the Kalman Filter to estimate a 

model with an AR(1) structure for both the common and the idiosyncratic factor: 
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As mentioned in the methodology section, in the estimation we normalize the scale of    by 

setting   
    .  Setting the variance of the innovation to unity affects the absolute magnitudes of the 

impact coefficients.  Therefore, we will base our magnitude analysis on variance decompositions in 

section 4.5, rather than the magnitude of the estimated coefficients. 

However, we can still review the statistical significance of the estimated parameters.  The 

results of Table 6 shows that the coefficient,   , which relates the individual indices to the unobservable 

common factor or the composite market index is significant for all indices.  The impact of the common 

factor on the individual stock indices is statistically significant at the 1% level.   

Additionally, we tested the null hypothesis that the coefficients are jointly zero, and the p-value 

of 0.0000 means that the individual stock indices coefficients are jointly significant.  The existence of a 

statistically significant common factor, jointly and individually, for all individual stock indices would 

confirm the presence of co-movement among individual stock indices.  In other words, the returns of 

each stock index can be attributed to a common factor and idiosyncratic factors.   

The common factor also exhibits relatively low degree of autocorrelation as indicated by the 

statistical significance for the coefficient   , with a value of 0.048.  This suggests low persistence of the 

common stock returns on the individual stock indices.  As mentioned in the introduction, with minimal 

Table 6 : Parameter Estimates of Model

Common 0.0485

(0.0130)

0.0000 ***

SP500 1.1536 0.0294

(0.0116) (0.0193)

0.0000 *** 0.1290

NASDAQ 1.2130 0.0036

(0.0125) (0.0171)

0.0000 *** 0.0410 **

RUT 0.9951 -0.0354

(0.0102) (0.0173)

0.0000 *** 0.8320

TSX 0.8357 -0.0646

(0.0121) (0.0131)

0.0000 *** 0.0000 ***

BOVESPA 0.4990 0.0261

(0.0119) (0.0126)

0.0000 *** 0.0390 **

MXN 0.6089 0.0322

(0.0116) (0.0128)

0.0000 *** 0.012 **

*     significant at the 10% critical value

**   significant at the 5% critical value

*** significant at the 1% critical value

 _  _( ,1) _1
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persistence in the data the advantages of the common dynamic factor model the principal component 

analysis are reduced.  This result suggests that the common component may be very close to the 

principal component leading eigenvector. 

4.5. Correlation and Variance Decomposition 

Based on the model estimated, we can measure the quantitative influence of variations in the 

common factors on fluctuations in the individual stock indices.  By looking at the amount of volatility of 

each of the daily logarithmic stock index returns that are explained by the volatility of the common 

factor we can provide an economic interpretation to the magnitudes of the coefficient estimates in 

Table 6.   

In keeping with the assumption that for each time-series the common factor and the idiosyncratic 

factor are orthogonal, the variance of each series can be decomposed into two terms: 

(13)   
    

    
      

   where (  = SP500, NASDAQ, RUT, TSX, BOVESPA, MXN)  

The parameter   
  represents the variance of an individual stock index logarithmic return.  Recall 

from section 3.3 we previously normalized the variance of the logarithmic returns to unity, or   
   .  

The impact coefficients,    represents the estimated parameter,   
  represents the variance of the 

unobserved common factor, and     
  which represents the variance of each stock indices’ idiosyncratic 

component or residuals.   

As explained in the Gregory, Head and Raynauld (1997) paper, we can compute the estimates of   
  

which measures the variance in the individual stock index logarithmic returns accounted for by the 

variation in the common factor.    
  is defined as the ratio of the variance of the common factor 

weighted by the appropriate impact coefficient, to the sum of the variances of the weighted common 

factor  and the variance of the idiosyncratic component,     
   where (  = SP500, NASDAQ, RUT, TSX, 

BOVESPA, MXN). 

Using these variances we can compute estimates of   
  as follows: 

(14)   
   

   
  

    
 

   
  

    
  

     
 

      
 

  where (  = SP500, NASDAQ, RUT, TSX, BOVESPA, MXN) 

where     
  is the estimated variance of the innovates to the idiosyncratic component of each individual 

stock index. 
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The estimated share of variance accounted for by common factors, Table 7, provides 

quantitative meaning to the estimated impact coefficients given in Table 6.  In the case of the US indices, 

the total logarithmic daily return variance accounted for by the common factor is similar and highest at 

approximately 50%.  This suggests that no one single stock index is adequately able to capture the 

common component to all markets.  For the other indices, approximately 37% of the variance of the 

logarithmic returns of the TSX stock index is explained by the common factor.  The two southern stock 

indices, BOVESPA and MXN, the common factor’s variance explains a lower amount of the index’s 

logarithmic return variance.  In addition to computing the amount of volatility in each stock index which 

is accounted for by the common factor volatility, we also compute the correlation between the common 

factor and the correlations between each individual stock index, as a measure of importance of the 

common factor.   

 

Table 8 presents the contemporaneous impact of the common factor on each individual stock 

index and the correlations between stock indices.  The three US indices correlation with the common 

factor is 0.0719, 0.0517 and 0.0455 respectively.  The TSX and MXN indices have a correlation of -0.0693 

and -0.0496 respectively.  In contrast, the BOVESPA index has a relatively low degree of correlation with 

the common factor at -0.0092.  This is not surprising as the variance decomposition suggested that the 

common factor’s variance for BOVESPA accounted for the lowest, among the indices, amount of index’s 

variation.    Overall, the contemporaneous correlation between the individual stock indices and common 

factor is low, with an average of 0.0068.   

Table 8 : Corrleation Matrix Between Idiosyncractic and Common Variables

SP500 NASDAQ RUT TSX BOVESPA MXN Common Average

SP500 1.00

NASDAQ 0.8655 1.00

RUT 0.8634 0.8668 1.00

TSX 0.7057 0.6604 0.6767 1.00

BOVESPA 0.4719 0.4252 0.4337 0.4269 1.00

MXN 0.5719 0.5369 0.5363 0.5066 0.5221 1.00

Common 0.0719 0.0517 0.0455 -0.0693 -0.0092 -0.0496 1.00 0.0068
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 Figure 2: Average Two-Year Rolling Window Correlation between Common Factor and Individual Stock Indices  

 

In Figure 2, we plot the average two year rolling correlation between the common factor and 

individual stock indices.  The correlation was calculated as the average correlation between the common 

factor and the stock indices over a rolling window of two-year segments.  As depicted graphically, on 

average, the correlation between has increased over the sample time period.  In the early to mid-1990s, 

the average correlation between the individual indices and common factor was relatively low.  Between 

the mid-1990s and mid-2000s, the correlation oscillated between zero correlation and 0.10.  From mid-

2000s, the correlations started to increase from 0.05 and peaking just below 0.20 and declining to 

approximately 0.10 for the two-year correlation window ending December 31, 2010.  Also, the spike and 

decline in correlation during this time period corresponds to the recent financial recession.  The increase 

in contemporaneous correlation suggest that over the sample period, the logarithmic return of 

individual stock have become relatively more synchronized with the common factor; corroborating our 

previous findings that the common factor is an increasingly significant factor in explaining stock index 

returns. 

4.6. Standard Beta vs. Across-Index Composite Beta 

Recall that the beta coefficient is defined as the covariance of the asset’s return with the market 

return, in effect it measures the effect of the stock market returns on individual asset returns. To 

compare the impact of beta on standard market indices (SP500 and NASDAQ) against the composite 

market index (common factor), we computed betas for stocks across various industries.   
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In order to determine the impact of the standard index or composite index we utilized a one 

factor model regressing (OLS with robust standard errors) an individual stock return ,   , against the 

market risk premium      .  The risk-free rate used,   , is the US Long-Term Composite Rate; which 

is the unweighted average of bid yields on all outstanding fixed-coupon bonds neither due nor callable 

in less than 10 years.  The regression followed the same period of April 28, 1993 to December 31, 2010 

and the risk-free rate used was the December 31, 2010 rate of 3.98% converted to a daily rate. 

In other words, we utilized a one factor model as follows: 

(15)                 where (  = XOM, MSFT, JNJ, BAC, WY, CSCO) 

 

The results of Table 9 indicate that movements in the standard stock index return have a greater 

impact on the individual stock returns compared to movements in the composite stock index.  This is not 

surprising as these individual stocks may be a large component of their standard index, but a much 

smaller portion of the composite market index.  In fact, the results indicate that stocks which operate 

globally may over-state the risk of movement from the “market index” if it is defined as the standard 

index (SP500 or NASDAQ).  The exclusion of movements from other global indices under-state the risks 

attributed to foreign indices.  If the market is defined as the composite market return then the individual 

stocks are 25x to 430x overstating the impact of a market index.   

The above table also shows the alpha generated by individual stocks.  Alpha is defined as the excess 

return attributed to a security in excess of the returns attributed to the market index.  For individual 

stocks the alpha when measured against standard market indices are all less than the alpha when using 

a composite market index.  This means that when using a composite index, the idiosyncratic risks of the 

individual stocks are higher (or under-stated) and underpriced when using a standard market index.  

Measuring market risk using a common composite index implies that more idiosyncratic risks can be 

eliminated using portfolio diversification techniques. 

Table 9 : Beta Calculations

Stock Index Alpha-1 Beta-1 Alpha-2 Beta-2 Beta-1/Beta-2 Alpha-1/Alpha-2

XOM Exxon Mobil Corporation SP500 Energy 0.0003 0.7854 0.0004 0.0293 26.8444 0.65

(0.030) (0.0000) (0.009) (0.0000)

MSFT Microsoft Corporation NASDAQ Technology 0.00035 0.93025 0.00062 0.03408 27.2948 0.57

(0.028) (0.0000) (0.006) (0.0000)

JNJ Johnson & Johnson SP500 Health Care 0.0003 0.5783 0.0004 0.0180 32.1518 0.76

(0.011) (0.0000) (0.004) (0.0000)

BAC Bank of America Corporation SP500 Financials 0.0002 1.5295 0.0004 0.0135 113.3969 0.45

(0.412) (0.0000) (0.0165) (0.0000)

WY Weyerhaeuser Company SP500 Materials 0.0002 1.0363 0.0003 0.0024 430.5180 0.50

(0.398) (0.0000) (0.177) (0.0000)

CSCO Cisco Systems, Inc. NASDAQ Technology 0.0005 1.4557 0.0008 0.0338 43.0848 0.68

(0.025) (0.0000) (0.009) (0.0000)

Alpha-1: standard alpha calculation per defined market index

Alpha-2: alpha calculation the common variable as the composite market index

Beta-1: standard beta calculation per defined market index

Beta-2: beta calculation the common variable as the composite market index

---- Standard Market Index -------- Composite Market Index ----
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4.7. An Alternate World Index Model  

In order to test the importance of overlapping trading hours, we modified the model to include 

several European and Asian stock indices.  Without repeating much of the analysis above, we determine 

that a     and     model was most appropriate.  We should note that we tested an AR(2) 

specification and both models suffer from the same modelling issues when the robustness checks for 

observable variable disturbances and randomness of innovations encountered above.  Therefore, based 

on the principal of a parsimonious model we adopted a first order autoregressive specification for the 

common factor     so that    .  For the idiosyncratic portion we also adopted a first order 

autoregressive structure for     , so that    . 

The new data included spans the same April 28, 1993 to December 31, 2010 time period with 

the data modification techniques.  The model was modified to include only the SP500 and TSX to 

represent the North American indices and the new European and Asian indices are: 

 

From the above table, the trading hours for the European indices, FTSE and DAX, exactly overlap 

with the one-hour difference and time zone and staggered hours of operations.  In addition, the 

European indices have a few hours of trading overlap with the North American indices.  The Asian stock 

indices, HS and N255, overlap each other for the majority of operating hours.  The FTSE’s trading hours 

do not overlap with any Asian index.  The DAX’s trading hours has a one-hour overlap with HS and none 

with N255.   

Using the Kalman Filter is to construct the likelihood function and to estimate the unobserved 

composite market index to represent these broad indices and note that the coefficients are significant 

for the common factor and the idiosyncratic factor. 

 

Table 10 : Stock Indices and Stock Exchanges

Stock Index Country Exhanges Time Zone Hours of Operations

SP500 Standard & Poor 500 USA NYSE & NASDAQ UTC -5:00 9:30 am to 4:00 pm EDT

TSX S&P/TSX Composite Index Canada TSX UTC -5:00 9:30 am to 4:00 pm EDT

FTSE FTSE 100 Index UK London Stock Exchange UTC +0:00 8:00 am to 4:30 pm BST

DAX Deutscher Aktien Index GER Frankfurt Stock Exchange UTC +1:00 9:00 am to 5:30 pm CEST

HS Hang Seng Index HK Hong Kong Stock Exchange UTC +8:00 9:30 am to 4:00 pm HKT

N255 Nikkei Index JPN Tokyo Stock Exchange UTC +9:00 9:30 am to 3:00 pm JST
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We also perform variance decomposition to quantify the magnitude of the indices and the 

results are as follows: 

 

From Table 12, the variance accounted for by the common factors is similar and grouped regionally.  The 

common factor’s variance accounts for almost 50% of the European indices variance, 37% of the North 

American indices variance and 15% of the Asian stock indices variance.  Also note that the common 

factor variance percentage of European and North American stock indices are closer in range. This is not 

Table 11 : Parameter Estimates of Model

Common 0.0692

(0.0180)

0.0000 ***

SP500 0.9610 -0.3197

(0.0189) (0.0166)

0.0000 *** 0.0000 ***

TSX 0.8330 -0.1626

(0.0185) (0.1715)

0.0000 *** 0.0000 ***

FTSE 1.0118 -0.2463

(0.152) (0.0228)

0.0000 *** 0.0000 ***

DAX 0.9836 -0.1257

(0.1487) (0.0252)

0.0000 *** 0.0000 ***

HS 0.4266 -0.1670

(0.0146) (0.0163)

0.0000 *** 0.0000 ***

N255 0.4266 -0.1521

(0.0178) (0.0164)

0.0000 *** 0.0000 ***

*     significant at the 10% critical value

**   significant at the 5% critical value

*** significant at the 1% critical value

 _  _( ,1) _1
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entirely surprising as there are a few hours of operational overlap.  Therefore, while co-movement exists 

between the indices even though hours do not overlap (Asian versus North American and Europe), the 

co-movement is stronger for indices that do overlap (North American and Europe). 

5. Conclusion 
With increasingly globalized financial markets and an increasing trend of investing in diversified 

portfolios of different countries through low-cost index funds and ETFs, the dynamic common factor 

model framework is an effective method to extract an unobserved common factor.  This common factor 

explains a portion of the returns of assets and can be interpreted as a composite market index which has 

been custom constructed to account for the risks in an investor’s portfolio.  In this paper, we applied the 

common factor framework to explain the daily logarithmic returns of stock indices which have 

overlapping hours of operation.  The results show that the impact coefficients related to the common 

factor are individually and jointly significant.  This means that the common factor explains the 

movement of the stock indices; and the common factor represents the co-movements between the 

indices.  To provide economic interpretation to the coefficients, we applied a variance decomposition.  

The variance decomposition shows that the common factor’s variance explains approximately 50% of 

the US stock indices variance.  Additionally a two-year rolling window correlation analysis between the 

stock indices and the common factor was performed.  This analysis shows that the correlation has 

increased over the sample period, and shows that the common factor has become increasingly 

important in explaining returns. 

Our comparison of standard market indices with the common factor index shows that using a 

one factor CAPM model the idiosyncratic risk is under-stated the effect of the standard index is over-

stated.  The effect of the common index beta is much lower than the standard index betas when various 

individual stocks are compared.  This was not a surprising result as the individual stocks have a much 

less impact on the composite index than its standard index.  This result implies that finance practitioners 

may be under-diversifying risks if they are using a standard market index. 

In extending our analysis, we also utilized the dynamic factor framework to extend the analysis 

to global indices with the inclusion of European and Asian indices.  The results shows that the portion of 

variance accounted for by the common factor’s variance are grouped for indices of similar geography.  In 

addition, the indices which overlap trading hours, North American and European, have a relatively close 

share of variance accounted for by the common factor variance.  This suggests that co-movements of 

indices which overlap is higher when compared to the Asian indices which do not overlap in trading 

hours. 

However, there are areas for further research.  The analysis of the co-movement in the stock 

indices can be extended by testing whether excess co-movement exists.  This type of analysis is related 

to existing literature on stock price and commodity price co-movements.  One is a paper by Pindyck and 

Rotemberg (1990) who posed the question whether stock prices move together too much.  The paper 

examined the co-movement of individual stock prices and determined whether the co-movement could 

be justified by economic fundamentals.  They reasoned that if all stocks moved together for reasons 
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unrelated to fundamentals, the market will move more than is justified by fundamentals.  For every 

model and grouping of companies they determined that there exists an excess correlation of returns.  

Notably, they comment that their tests may be incomplete as they may have excluded some important 

macroeconomic variables from their model specification.  Another paper by Shiller (1989) examined the 

co-movements in U.S. and U.K. stock prices and co-movements in dividends.  They note the importance 

of their work by referring to October 19-20, 1987 when the level of stock prices in all major stock 

markets of the world made similar spectacular drops.  Similar to Pindyck and Rotemberg, Shiller finds 

that there is significant co-movement between the U.S. and U.K. markets. 

In addition, future research can be done to improve the dynamic common factor model.  Our 

analysis of the serial correlation of the observed disturbances, which tests the autoregressive structure 

of the stock index returns, shows satisfactory results for half of the time-series data.  Also, test of the lag 

structure of the idiosyncratic variable also indicated unsatisfactory results for several indices.  This 

indicates that the model may not be perfectly specified and more robust models with increased lags or 

the inclusion of the lagged common variable can be considered in the future. 
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