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Abstract

Tying is prominent in many industries yet its effects on competition or its
strategic possibilities are not well understood. What is particularly interest-
ing about tie-in sales and its effect on competition and social welfare is that
there has been no general rule found or established to deal with these scenar-
ios. This paper aims to contribute to the understanding of the effects of tying
when product differentiation is present. We modify the model in Egli (2007)
to use quadratic transportation costs as opposed to the linear transportation
costs it was originally modeled with. Egli finds minimal differentiation for the
subgame without tie in sales and we find maximal differentiation. We also ex-
tend Egli’s decision game to allow firm 2 the ability to enter both the primary
and secondary market in response to firm 1’s tying. We find that firm one can
then strategically not tie in order to preserve monopoly profits in the primary
market.
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1 Introduction

Tying is prominent in many industries yet its effects on competition or its strategic

possibilities are not well understood. Products are said to be tied when a firm requires

the sale of good A (the tying good) to include the sale of good B (the tied good).

There are many examples of this in the market but examples in the computer and

technology industries have inspired much debate and are most prominent in the court

cases. For example, in the civil case United States v. Microsoft (1998) one of the

main issues was Microsoft technologically tying its Internet browser to its operating

system and one of the concerns addressed was whether or not this tying was an

anti-competitive action. Another example in the technology industry is IBM and

its tabulating machines. To use these machines the consumers also had to purchase

punch cards and IBM tied the sales of their punch cards to the sale of their machines.

What is particularly interesting about tie-in sales and its effect on competition

and social welfare is that there has been no general rule found or established to

deal with these scenarios. Modeling and analyzing one scenario will lead to the

conclusion that tying is anti-competitive and decreases social welfare. While changing

just one aspect of the model to reflect a new factor in the relevant market will change

the findings and often times the effect on social welfare is found to be ambiguous.

Choi and Stefanadis (2001, p. 70) adeptly explain that, “The debate about tying

cannot be conclusive unless formal models incorporate the aspects of the world that

practitioners consider important.” For that reason the adaptation and continuation

of these models is important in expanding and refining our understanding of tying

and its consequences.

This paper will focus on tying decisions combined with product differentiation

decisions and is very closely related to a model by Alain Egli (2005, 2007). In the

sections to follow we present a brief overview of the literature, test the robustness

of Egli’s model by evaluating it with quadratic costs, determine the quadratic cost

outcomes of Egli’s decision game, and extend his model to allow entry in both the

1



tying and tied goods markets. We find that using quadratic transportation costs

instead of linear results in maximal product differentiation in the case where firm 1

does not tie it’s primary and secondary good whereas Egli finds minimal differentiation

in the same scenario with linear costs.

2 Literature Review

The two aforementioned technology examples have something in common. They

are both examples of a monopolist firm in market A tying to good B which faces

competition. This is the main concern of “leverage theory”. Leverage theory in the

tying law literature informally claims that a firm with monopoly power in one market

has the ability and incentive to extend their monopoly power to a competitive market.

It claims that monopolies can do this by tying (or bundling1) their monopoly good

to the competitive good, thereby foreclosing sales in the competitive market. This

concept has been met with much criticism in the economic literature. The toughest

critics of this theory were members of the Chicago School of Economics. They argued

that when a monopolized good is tied to a competitive good the monopoly power

can only be leveraged once in that market.2 They conclude then that there is no

additional incentive for monopolies to tie their products. So why do we see so many

examples of such tying?

Whinston (1990) claims that the Chicago argument, (that there is no such leverage

possibility), breaks down when the assumption that there is constant returns to scale

in the competitive market is relaxed. If the competitive market exhibits constant

returns to scale then there is no possibility of leverage by the monopoly firm. If,

however, the competitive market does not have constant returns to scale, then tying

can in fact be used to extend monopoly power to the tied good market. Whinston

1Bundling is often used to specify that the tie is of two goods in a one to one ratio. Our models do
not use tying for more than a one to one ratio so we use the term tying and bundling interchangeably
throughout.

2See Whinston (1990, p. 837) or Tirole (1989, p. 334) for a simple theoretical example.
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explains with a simple model that without constant returns to scale it is possible

for the monopoly firm, through the use of tying, to augment the market for the

competitive good by inducing exit from the competitive market. Tying literature

that focuses strictly on price discrimination as a benefit of tying misses the bigger

picture. Whinston (1990, p. 839) finds that, “tying can lead to a monopolization of

the tied good market. Most interestingly, the mechanism through which this exclusion

occurs is foreclosure; by tying, the monopolist reduces the sales of its tied good market

competitor, thereby lowering his profits below the level that would justify continued

operation.” Tying is often profitable for the monopolist when precommitment to

tying is feasible and he finds that the welfare effects on consumers and efficiency are

ambiguous.

Whinstons work has been expanded on by others to investigate alternative mar-

ket situations where tying can influence the structure of related markets. Choi and

Stefanadis (2001) model tying by a monopolist as a barrier to entry in the competi-

tive market3. Their model includes “risky upfront R&D4 investment”. They model a

situation where success in the R&D investment is necessary for entry into the com-

petitive market to be profitable. The probability of successful innovation from that

investment is a function of the level of investment made. When the monopolist ties

this means that the entrants must be successful in both markets to be successful

at all. The entrants become dependent on each others success and this makes the

investment more independently risky and entry less likely.

Like Whinston, Choi and Stefanadis require that a commitment to tying can be

made. They explain that if the monopolist does not tie, and only one of the entrants

successfully invests, then the incumbent (monopolist) can use a price squeeze to

extract the profits of that innovation. However, if the monopolist does not tie and

both entrants are successful at innovating, the monopolist will be forced out of the

market. The monopolist now faces a trade-off decision. It profits the monopolist to

3As opposed to Whinston’s paper which models forced exit in the competitive market.
4research and development
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tie if the risk of both entrants succeeding outweighs the benefits of a price squeeze if

only one succeeds. The result is reduced incentives for innovation which can mean

reductions in consumer and overall economic welfare. However, this is not to say that

tying is always anticompetitive.

As mentioned in the introduction, tying results can not be conclusive unless they

include the factors of the market that are considered important. Carlton and Wald-

man (2002) also extend Whinston (1990) to show how tying can be used to establish

and protect monopoly power in the primary (tying) market and emerging complemen-

tary (competitive) markets. Most tying papers before Carlton and Waldman focus

on the ability of the monopoly to extend their primary market power into the com-

plementary (tied) market and do not look at the ability to preserve monopoly power

in their primary market. Their model examines the effects of tying with two time

periods and complementary market entry costs. In period one the monopolist has a

secure monopoly in primary market A and there can be entry in the complementary

market B with complementary entry costs. In period two there is threat of entry into

the primary and secondary markets by new firms with primary and secondary entry

costs. It is assumed that the primary goods produced by the different firms are the

same quality but that the complementary good supplied by the alternative firm in

market B is superior.

Carlton and Waldman find that the monopolist only has incentive to tie its goods

in the first period when there is a threat of entry in the primary market in the second

period. Essentially they conclude that tying in the first period can make entry in the

complementary product unprofitable. Profits in the primary market in the second

period depend on increased sales in the complementary market. When tying deters

entry in the complementary market entry in the primary market is no longer profitable

and therefore deterred. Entry into the primary market is no longer a possibility or

threat. In summary, they find that firms can use tying, strategically, to deter efficient

entry in the primary market and in evolving industries, like the technology industry,
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and in doing so protect their monopoly positions. This finding is very interesting and

important to policy makers and enforcement agencies in protecting competition in

the marketplace.

Momentarily we digress from the tying literature to focus on the other main body

of work pertinent to this paper which is the product differentiation literature. Product

differentiation is found in nearly any market you can think of and should therefore

be included in the evaluation of tying effects. Products are said to be differentiated

if they differ from each other in either quality, style, location, or any number of

factors. The first important paper considering the effect of product differentiation in

competition was by Harold Hotelling in 1929. In this paper he pioneered a simple

mathematical model for differentiation using a spatial diagram, a market line of length

l. The competing firms location on that line represents their amount of differentiation

from each other in the factor(s) considered, for example, location. Consumers are

uniformly distributed on that line representing each consumers preferred location.

Hotelling finds that the optimal response of the firms result in what he calls the

principle of minimal differentiation. This means that there is a tendency for firms

to locate as close to each other as possible to maximize their profits. Therefore, the

firms will both locate at the same location which is the middle of the line or the center

of the market.

There is a problem with Hotelling’s conclusion however. D’Aspremont, Gab-

szewicz, and Thisse (1979) point out that there is a discontinuity in the profit func-

tions when the firms are located too close to each other. When the firms are located

together at the center of the market there is no stable price equilibrium. This is

because if either firms marginally undercut the price of their competitor they will

acquire the entire demand for that market. When marginal costs are assumed to be

zero this price undercutting will continue until equilibrium (best response) prices are

zero. They propose in their paper two solutions to the problem of having no stable

equilibrium. Firstly, there will be a stable Cournot equilibrium if the firms are “lo-
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cated outside the quartiles5” of the market line. This effectively restricts the strategy

space for the competing firms to choose their locations. Secondly, there will always

be an equilibrium in prices, for any locations of the two firms, if the transportation

costs are quadratic with respect to the distance6.

Both Tirole (1988) and D’Aspremont, Gabszewicz, and Thisse (1979) work out

Hotelling’s model with quadratic costs. Interestingly, they find that the principal of

minimal differentiation is not the result. Just the opposite is found. Hotelling’s differ-

entiation model, now with quadratic costs, results in maximal product differentiation.

Meaning that now, instead of locating together in the middle of the market, the com-

peting firms will locate at the very ends of the market line, as far from each other

as possible. This result is explained by Tirole as being the result of two conflicting

effects. The market share (or demand) effect entices the firms to move towards their

competitor in the hopes of gaining more of the market. However, the firm recognizes

that in moving towards its competitor, (decreasing differentiation), their competitor

is forced to lower their prices which in turn lowers the market price. Tirole calls this

the strategic effect and it is shown to dominate. With quadratic transportation costs

firms locate at the ends of the market in an effort to soften competition and avoid

this price reduction caused by the strategic effect.

A few of the tying papers mentioned thus far allow for some kind of product differ-

entiation but the level of differentiation is specified in the model as a predetermined

amount. Egli (2005) develops a model that combines tying and product differentiation

and endogenizes the amount of product differentiation choice in the competitive mar-

ket. Therefore, whatever level of product differentiation maximizes profits is the level

that will emerge in the model. Egli sets up his model in the common form we outlined

earlier. There is market A and market B. Firm 1 (the tying firm) has a monopoly in

market A and competes with firm 2 in market B. Market B is modeled like Hotellings’

5D’Aspremont, Gabszewicz, and Thisse (1979, p. 1147)
6See also, Tirole (1988, p. 280) for a quadratic mathematical example
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model using linear transportation costs. In the pure tying7 case, when firm 1 ties,

(requires the sale of its good B to accompany the sale of any good A), Egli finds that

minimal differentiation is the result in the two stage game where firms first choose

their locations and then their profit maximizing prices. Unlike Hotelling’s model

however, there is no discontinuity in the profit function because of the asymmetry

of the market. This asymmetry causes the price undercutting problem to disappear

because neither firm 1 nor firm 2’s marginal price reductions will enable them to gain

the entire market. This is due to consumers varying preferences for good A. A price

cut by firm 1 will never entice all consumers to buy good A and conversely, a price

cut by firm 2 will never entice all consumers to give up good A.

Egli also looks at the tying decision game and its’ effect on competition. To do

this the model is extended to four stages8;

Stage 1: Firm 1 once and for all chooses to offer its goods in a bundle or

separately.

Stage 2: Firm 2 once and for all decides whether to be active in market

B or not.

Stage 3: Active firms choose their locations.

Stage 4: Firms simultaneously set prices.

He first analyzes this game’s location-then-price subgames and then compares

the profits to analyze the first two stages; firm 1’s bundling decision and firm 2’s

entry decision. To deal with the discontinuity in the profit function due to linear

transportation costs Egli uses the first solution for equilibrium, mentioned above, by

D’Aspremont, Gabszewicz, and Thisse. Egli restricts the strategy space for the two

firms to locate outside of the quartiles. This means the firms are restricted to locate

no closer to each other than 1/2 for a pure strategy equilibrium to exist. From this

7“Pure tying” is Egli’s term for the case where firm 1 only ties its two goods in a ratio of one to
one.

8Egli (2005, p. 15)
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decision game Egli finds that tying by firm 1 will always foreclose firm 2’s sales. For

fixed costs that are high enough this can lead to firm 2 not entering the market.

However, when fixed costs are small enough, firm 2 will be active in the market and

it may or may not be more profitable for firm 1 to bundle depending on the size of

the transportation costs.

In the rest of this paper we will first look at the robustness of Egli’s linear trans-

portation cost findings by presenting his model and decision game with quadratic

costs. Using quadratic costs, as mentioned above, slightly augments the model so

that with any combination of locations chosen by firm 1 and 2 there will be a pure

strategy price equilibrium. This eliminates the need for a restricted strategy space in

the decision game and leads to some differences in the locations chosen by the firms in

the subgames. We also extend Egli’s model to present the decision game where firm

2 has the option, in response to firm 1’s tying, to enter market A as well as market

B and tie it’s goods.

3 The Model

Following Egli’s method and notation, the model is comprised of two firms; firm 1

and firm 2, and two markets; good A and good B. Firm 1 is a monopolist in market

A and also competes in the duopoly market B. Firm 2 competes in market B with

firm 1. Good A is non-differentiable and good B is differentiated along a line of

length 1 which represents the possible values for good B’s differentiable aspect (ex.

location). Consumers location, denoted by β, along this line represents their most

preferred good B. Let q1 and q2 be firm 1 and firm 2’s respective locations. We assume

that q1 is always located to the left of q2 therefore q1 < q2. We assume that each

consumer demands at least good B so every consumer either buys from firm 1 or firm

2. Different from Egli, we assume quadratic transportation costs.

Consumers have the same gross valuation for good B supplied by either firm which

we denote rB. Valuations for good A, rA, differ between consumers but are distributed
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uniformly on the interval [0, 1]. We assume that producers pass all transportation

costs on to the consumer and those unit transportation costs are represented by t. The

consumer pays the quadratic transportation cost for the distance between the firm

and the consumers locations, t|q - β|2. Consumers purchase at most one of each good

so, in the pure tying case, consumers have the option of buying the bundle of good A

and B from firm 1, or buying just good B from firm 2. Firm 1 sells its bundle for the

retail price of p1 and firm 2 sells its good B for the retail price of p2. Consumers are

concerned about their generalized price, (their utility of consumption), which is their

valuation for the good or bundle minus the costs of acquiring that good or bundle.

When the consumer purchases the bundle of goods from firm 1 their utility is

v(β, q1, p1) = rA + rB − t|q1 − β|2 − p1. (1)

If the consumer buys only good B from firm 2 their utility is

v(β, q2, p2) = rB − t|q2 − β|2 − p2. (2)

Following Egli (2005) we look at the two stage decision game in the pure tying

case where firm 1 ties one of its monopoly good A to one of its competitive good B.

In the first stage firms choose their locations, (q1 and q2), and in the second stage

they simultaneously choose optimal prices, (p1 and p2). To solve this game we first

need to find the demand equations.

4 The Equilibrium

4.1 Demand Specification

To solve for equilibrium locations and prices in this pure tying version of the model

we need to find the demand equations for firm 1 and firm 2. As we explained above,

consumers are concerned with their generalized price when deciding whether to pur-

chase firm 1’s bundle or firm 2’s good B. In a standard Hotelling model, without

tying, there are three regions of consumers. Consumers located to the left of firm 1
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(β ≤ q1), consumers located between firm 1 and firm 2 (q1 < β < q2), and consumers

located to the right of firm 2 (q2 ≤ β). In this standard version consumers in the

hinterlands9 all demand the good from the firm closest to them because they are only

considering transportation costs and their most preferred location (β). For consumers

located in the hinterlands, choosing the closest firm yields the highest utility in this

case. The only consumers that have a choice to make are the consumers between the

two firms. The demand for each firm is found by identifying the indifferent consumer

between them. Consumers to the left of that indifferent location demand firm 1’s

good and consumers to the right of that location demand firm 2’s good.

In our model however, with varying valuations for good A (rA), there is a new

dimension to consider to find the indifferent consumer and the corresponding demand

for each firm. In this model the demand in the hinterland does not solely belong to

the closest firm. Some people in the left hinterland, though closest to firm 1 and

purchasing the bundle, will have such a low valuation for good A that the benefits to

them of having the bundle (i.e. lesser transportation costs) do not outweigh the costs

even though they are closest to the bundle. In the region left of firm 1, (β < q1),

the consumer will purchase the bundle if their generalized price for it is greater than

their generalized price for good B from firm 2, that is if:

rB + rA − t(q1 − β)2 − p1 ≥ rB − t(q2 − β)2 − p2

We can see that rB is not a factor because in either case the consumer gets good B so

they cancel out. Solving the equality for rA gives us the indifferent consumers in that

region and the following must be satisfied for the consumer to purchase the bundle

from firm 1:

rAX
≥ p1 − p2 + t(q1 − β)2 − t(q2 − β)2

To find the demand equations we break it down into three regions following Egli’s

linear model. Region X contains all consumers with β ≤ q1, region Y contains all

9These are the two outer regions, i.e. to the left of firm 1 and to the right of firm 2.
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consumers with q1 < β < q2, and region Z contains all consumers with β ≥ q2. The

indifferent consumers are given by the equality for rA in each region and firm i handles

the demand DiR in the respective regions, R = X, Y, Z10.

Figure 1: Demand Regions with Quadratic Transportation Costs
Source: Modified from Egli (2007, p. 33)

The line rA in figure 1 is a straight line with a positive slope because in all three

regions the derivative of the segment with respect to β, (∂rA/∂β), is the same and

equals 2tq2 − 2tq1. This is greater than zero because q2 > q1.

Demand Region X (DiX): As we noted above, the indifferent voter in each

region is where the generalized prices are equalized:

rB + rA − t(q1 − β)2 − p1 = rB − t(q2 − β)2 − p2

When the above condition on the generalized prices is satisfied then the consumer

is indifferent between purchasing the bundle from firm 1 and good B from firm 2.

If the left side is greater than the right, the consumer demands the bundle from

firm 1. Conversely if the right side is greater than the left, the consumer demands

only good B from firm 2. Solving for rA as an equality gives us the equation for

indifferent consumers in region X. For Egli’s linear version the demand in this region

only depends on rA but for the quadratic case we get:

r̂AX
= p1 − p2 + t(q1 − β)2 − t(q2 − β)2 (3)

10Egli (2005, p.8)

11



Equation (3) represents the minimum value of rA in region X required for the consumer

to purchase the bundle. The area above the line r̂AX
is therefore demand for firm 1

in that region and the area below it is demand for firm 2. The demand functions for

region X are:

D1X = q1 − 0−
∫ q1

0
r̂AX

(β)dβ (4)

D2X =
∫ q1

0
r̂AX

(β)dβ (5)

And evaluating the integrals these become:

D1X = q1[1− p1 + p2 + t(q2
2 − q1q2)] (6)

D2X = q1[p1 − p2 − t(q2
2 − q1q2)] (7)

These are different demand equations for this region than with linear costs. Egli

found that D1X = q1[1− p1 + p2 + t(q2 − q1)] and D2X = q1[p1 − p2 − t(q2 − q1)]. We

can see by comparing these that using quadratic costs effects the demand equations

for this hinterland region X.

Demand Region Y (DiY ): The analogous reasoning and methodology for region

X holds for region Y. The only difference is the transportation costs are now evaluated

for consumers who’s location, (β), is between q1 and q2. Hence the indifferent voter

is now given by:

rB + rA − t(β − q1)2 − p1 ≥ rB − t(q2 − β)2 − p2

→ r̂AY
= p1 − p2 + t(β − q1)2 − t(q2 − β)2 (8)

Same as for region X, r̂AY
is the minimum valuation for A required in region Y for

the consumer to demand the bundle from firm 1. The resulting demand equations

for solving for these areas are:

D1Y = q2 − q1 −
∫ q2

q1

r̂AY
(β)dβ (9)

D2Y =
∫ q2

q1

r̂AY
(β)dβ (10)
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The demand equations for region Y are equal to:

D1Y = (1− p1 + p2)(q2 − q1) (11)

D2Y = (p1 − p2)(q2 − q1) (12)

What is interesting about these demand equations, (11) and (12), is that they are

the same as Egli finds for region Y demand equations in his paper with linear costs11.

Switching to quadratic costs in region Y does not change the demand for firm 1 or 2

in that region.

Demand Region Z (DiZ): Again, all the same reasoning and methodology for

region X, and Y holds for region Z. The only difference is the transportation costs

are now set up for consumers who’s location, (β), is between q2 and 1. Hence the

indifferent voter is now given by:

rB + rA − t(β − q1)2 − p1 ≥ rB − t(β − q2)2 − p2

→ r̂AZ
= p1 − p2 + t(β − q1)2 − t(β − q2)2 (13)

The demand equations for region Z are:

D1Z = 1− q2 −
∫ 1

q2

r̂AZ
(β)dβ (14)

D2Z =
∫ 1

q2

r̂AZ
(β)dβ (15)

Evaluated these regions become:

D1Z = (1− q2)[1− p1 + p2 − t(q2 − q1 − q1q2 + q2
1)] (16)

D2Z = (1− q2)[p1 − p2 + t(q2 − q1 − q1q2 + q2
1)] (17)

As was the case for hinterland region X, in this hinterland region Y the demand

equations when quadratic costs are used produce a different demand region than Egli

found with linear costs. The demand functions with quadratic costs, (equations 16

11Egli (2005, p. 10)
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and 17), have two more terms than Egli’s demand equations; D1Z = (1− q2)[1− p1 +

p2 − t(q2 − q1)] and D2Z = (1− q2)[p1 − p2 + t(q2 − q1)].12

Now we can state the total demand for firm 1 and firm 2. Their total demand

functions are the sum of their respective fraction of each region. The total demand

equations for firm 1 and firm 2 using Egli’s framework but with quadratic costs are:

D1 = D1X +D1Y +D1Z

D1 = 1− p1 + p2 − t(q2 − q1)(1− q1 − q2) (18)

D2 = D2X +D2Y +D2Z

D2 = p1 − p2 + t(q2 − q1)(1− q1 − q2) (19)

Interestingly, we find that our quadratic cost model produces the same total de-

mand equations as does the linear cost model. Total demand for firm 1 and total

demand for firm 2 are unchanged despite the differences in the demand equations for

the hinterland regions.

4.2 The Firm’s Behaviour

Next we look at the two stage game where firms, facing the above calculated demand

equations, first chose their optimal locations and then simultaneously set their optimal

prices. We look at the pricing decision first to solve this decision game by backward

induction13. First, firms maximize profits

Π1 = p1D1 = p1[1− p1 + p2 − t(q2 − q1)(1− q1 − q2)],

Π2 = p2D2 = p2[p1 − p2 + t(q2 − q1)(1− q1 − q2)],

with respect to their prices. We get reaction functions:

p1(p2) = (1 + p2 − t(q2 − q1)(1− q1 − q2))/2,
12Egli (2005, p.9)
13The equations in this section are identical to Egli’s in section 3.2 because we find that the

quadratic transportation costs demand equations are found to be identical to Egli’s linear cost
demand equations (Egli 2005, p. 11)
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p2(p1) = (p1 + t(q2 − q1)(1− q1 − q2))/2.

Subbing these reaction functions into each other gives us optimal prices as functions

of the locations:

p∗1(q1, q2) = (2− t(q2 − q1)(1− q1 − q2))/3

p∗2(q1, q2) = (1 + t(q2 − q1)(1− q1 − q2))/3

Next, to look at the location decision made in the first stage, we sub these optimal

prices, (p∗1 and p∗2), into the profit equations:

Π1 = [2− t(q2 − q1)(1− q1 − q2)]2/9

Π2 = [1 + t(q2 − q1)(1− q1 − q2)]2/9

In the first stage firms maximize the above profit equations with respect to their

location to find their profit maximizing location. The first order conditions for these

profit equations with respect to locations are:

∂Π1/∂q1 = 2t(2− t(q2 − q1)(1− q1 − q2))(1− 2q1)/9 = 0

∂Π2/∂q2 = 2t(1 + t(q2 − q1)(1− q1 − q2))(1− 2q2)/9 = 0

As Egli notes in his paper, we can see in the above equations that we see the optimal

price equations here and can sub them in. Substituting in the price functions to see

the partials more clearly yields:

∂Π1/∂q1 = 2tp∗1(q1, q2)(1− 2q1)/3 = 0

∂Π2/∂q2 = 2tp∗2(q1, q2)(1− 2q2)/3 = 0

To find the locations that satisfy the above first order conditions, i.e. maximize

profits, there are two possible solutions. Either q1 and q2 equal 1/2 or p∗1 and p∗2 equal

zero. Firms are profit maximizing. Choosing prices equal to zero yields zero profits.

Therefore we know that both firms locate at 1/2 and are therefore exhibiting minimal

differentiation. Since we have the same demand equations as Egli finds for linear costs,
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his proposition 1 holds for the quadratic transportation costs case: Proposition 114

In the Hotelling game with tie-in sales firms set equilibrium prices p∗1 = 2/3 and

p∗2 = 1/3. Both firms locate at q = 1/2. Equilibrium profits are Π∗
1 = 4/9 and

Π∗
2 = 1/9.

As explained in the literature review, there was a discontinuity found in the profit

equations for Hotelling’s principal of minimum differentiation. It was found that

minimal differentiation is not a stable equilibrium because each firm would have the

incentive to slightly undercut the price of the competing firm to gain the entire market.

This is not a problem for the equilibrium found here because of the asymmetry of the

markets. Because firm one ties good A to their good B, the consumers preferences

between purchasing from firm 1 or purchasing from firm 2 are differentiated. Firm

2 can not decrease it’s price for good B to gain the entire market because there will

always be some number of consumers who’s value for good A (rA) is so high that they

will never be compensated enough to give up good A. To gain the entire B market,

firm one would have to price less than firm 2 (p1 < 1/3) and at these prices could

earn no more profits than 1/9 which is less than the profit of 4/9 it would earn if it

did not lower it’s price15. Likewise, whatever amount firm 2 lowers it’s price for good

B is the amount that firm 2 loses in profit so firm 2 will never undercut the price16.

5 Tying Decision and the Effect on Competition

with Quadratic Costs

Egli (2005) next works out the extended game, (the ”decision game”), to look at the

tying decision and the effects on competition. He assumes supplying good B involves

fixed costs K and assumes that if firm 1 does not bundle both firms are active in

market B. As mentioned earlier, he extends the game to four stages17:

14Egli (2007, p. 35)
15Egli (2005, p.13)
16Egli, (2005, p.13)
17Egli (2005, p. 15)
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Stage 1: Firm 1 once and for all chooses to offer its goods in a bundle or

separately.

Stage 2: Firm 2 once and for all decides whether to be active in market

B or not.

Stage 3: Active firms choose their locations.

Stage 4: Firms simultaneously set prices.

Figure 2: Timing of the Decision Game
Source: Egli (2005, p. 15)

This decision game and its timing is represented by the decision game tree in Figure

2 above. Egli works out the equilibrium outcomes for the three location-then-price

subgames of this decision game; without tie-in sales by firm 1, inactive firm 2 with

tie-in sales by firm 1, and active firm 2 with tie-in sales by firm 1. In this section

Egli restricts the strategy space so that firms 1 and 2 can only locate outside of the

quartiles, (q1 ≤ 1/4, q2 ≥ 3/4)18. He does this because this is one of the ways proposed

by D’Aspremont, Gabszewicz, and Thisse to solve the problem, mentioned already, of

the discontinuity in the profit functions that result from using linear transportation

costs. Imposing this restriction allows a pure strategy equilibrium to exist19.

18Egli (2005, p. 16)
19D’Aspremont, Gabszewicz, and Thisse (1979, p. 1137)
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This strategy space restriction is not necessary in our model with quadratic trans-

portation costs20. A pure strategy equilibrium does exist and the level of differentia-

tion turns out to be different than what Egli finds with linear transportation costs.

The next three subsections will summarize the three subgames in turn.

The Subgame without Tie-in Sales: When firm 1 does not tie its good A to

its good B we have two separate markets. We have the B market with firm 1 and firm

2 competing, and, we have the market for good A where firm 1 has a monopoly. The

pricing and differentiation21 decisions for market B become a simple Hotelling model

with quadratic costs now. This results in maximal differentiation22. This means that

firm 1 will locate at q1 = 0 and firm 2 will locate at q2 = 1.

With linear costs and the strategy space restrictions imposed Egli finds the oppo-

site. He finds that firm 1 and firm 2 minimally differentiate and, due to the strategy

space restriction, locate at 1/4 and 3/4 respectively. Despite the differences in the

level of differentiation arrived at, the price and profit findings for the quadratic case

turn out to be the same as for Egli’s linear case. The firms both set the same price for

good B equal to t. And the profits for firm 1 and firm 2 in market B are (1/2)t−K

each. In this subgame, without tying, firm 1 also earns monopoly profits from market

A. In market A firm 1 maximizes profits at ΠM
A = 1/4 by setting monopoly price

pA = 1/223.

Lemma 124 In the subgame without tie-in sales firm 1 sets price pA = 1/2 in market

A. Both firms set the same prices p1B = p2B = t in market B. Firm 1 locates at

q1 = 0 and firm 2 at q2 = 1 in market B. Overall profits are ΠNT
1 = (1 + 2t)/4 −K

and ΠNT
2 = (1/2)t−K.

20Tirole (1988, p. 280) notes that “the quadratic-cost model allows us to sidestep these technical
issues” when explaining that a pure-strategy price equilibrium exists in this situation.

21The differentiated aspect in this model being location.
22For a mathematical example of this result see Tirole (1988, p. 280-281). It is proven that in

this scenario ∂Π1/∂q1 < 0 and ∂Π2/∂q2 > 0, which results in maximal differentiation.
23Egli, (2005, p. 17).
24Egli (2005, p. 18) with locations modified for quadratic case findings.
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The Subgame with Inactive Firm 2 and Tie-in Sales: By the specification

of this model, if firm 2 is inactive in market B then firm 1 is a monopoly in both mar-

kets. Without competition demand for firm 1’s products will inevitably increase and

firm 1 will also be able to charge greater than competitive prices. This means that

regardless of whether firm 1 ties or not, monopoly profits for firm 1 will be greater

than firm 1 profits when firm 2 is active. Therefore ΠM
1 is always greater than firm

1 profits in any subgame with competition. This is the same reasoning and findings

for quadratic transportation costs as Egli’s linear transportation costs.

The subgame with Active Firm 2 and Tie-in Sales: This is the same situ-

ation as the equilibrium analyzed in section 4 and Proposition 1 in section 4.2 holds

here:

Lemma 2 In the Hotelling game with tie-in sales firms set equilibrium prices p∗1 = 2/3

and p∗2 = 1/3. Both firms locate at q = 1/2. Equilibrium profits are Π∗
1 = 4/9 −K

and Π∗
2 = 1/9−K.

Egli finds different equilibrium locations in this subgame because of using restricted

strategy space to solve the problem of the profit functions being discontinuous with

linear transportation costs. Our model using quadratic transportation costs sidesteps

this technical problem and the assymettry of this market leads to price undercutting

being unprofitable as explained above.

The above analysis solves the third and fourth stages, (choosing location and price),

of this decision game for each subgame. To complete the analysis we first look at the

second stage which is firm 2’s entry decision and lastly, we examine the first stage

which is firm 1’s tying decision. Egli’s analysis of these first two stages relies only on

the profit equations. Since the profit equations remain the same for each subgame

with our quadratic cost modification, (only equilibrium locations q1 and q2 changed),
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the rest of this section will be a summary of Egli’s reasoning and findings for the rest

of this decision game.

Egli next looks at the second stage decision, firm B’s entry decision. He assumes

that fixed costs are such that when firm 1 does not tie, firm 2 is always active. If

firm 1 does tie then firm 2 will do what is most profitable in response. Firm 2 enters

market B as long as it earns positive profits. When firm 1 ties and firm 2 enters the

B market, firm 2’s profit function is Π∗
2 = 1/9 −K. Therefore, firm 2 will enter the

market as long as K ≤ 1/9; otherwise entering would earn firm 2 negative profits25.

Given firm 2’s behaviour in stage 2, Egli looks at firm 1’s decision to tie which is

stage 1 of this decision game. Firm 1’s decision is based on maximizing its’ profits

so he compares the profit equations of the subgames with firm 1 tying and not tying.

Firm 1’s decision to tie is dependent on firm 2’s decision to enter market B which

is itself dependent on fixed costs K. If fixed costs are less than 1/9, firm 2 will not

enter market B. Firm 1 will always tie in this situation to forclose any sales by firm

2 and secure monopoly profits for itself. Egli finds the following:

Proposition 226 In the decision game, firm 1 bundles

· if K ≤ 1/9 (i.e., firm 2 is active) and transportation costs per unit distance are

small enough (i.e., t ≤ 7/18). The firms set prices and earn profits given by

lemma 2.

· if K > 1/9 (i.e., firm 2 is inactive). Firm 1 earns monopoly profits ΠM
1 .

· Otherwise, firm 1 does not bundle and the firms’ prices and profits are given by

lemma 1.

Egli shows that firm 1 tying will always foreclose firm 2’s sales and can do so to the

point where entry by firm 2 is not profitable, (when K > 1/9), thereby altering the

structure of the market. However, firm 1 tying will not always keep firm 2 out of

25Egli (2005, p. 19)
26Egli (2005, p. 20)
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the tied market if transportation costs are low enough (t < 7/18). Egli (2005, p.21)

breaks down this result; “As lemma 1 shows, non-bundling prices are lower in the

competitive market the lower t is. A decreasing t increases substitutability between

goods because transportation costs are lower. Higher substitutability intensifies price

competition. Firm 1 circumvents such intense competition by using tie-in sales. Its

demand increases and prices become independent of t.” What is also interesting is

that firm 1’s bundling has the ability to actually increase firm 2’s profits despite the

decrease in sales. When firm 1 ties in scenario one of proposition 2 it makes firm 2’s

profit equal to 1/9−K. Without firm 1 tying firm 2 would have earned (1/2)t−K.

For t < 2/9 this is actually an increase in profits for firm 2.

6 Decision Game Extended for Entry in Market A

As we learned in the previous section, firm 1 can foreclose firm 2’s sales by tying.

Now we want to see if and how this outcome will be changed by giving firm 2 the

option of entering market A. We make a simple extension to stage 2 of Egli’s decision

game in section 5 so that it is now:

Stage 2: Firm 2 once and for all decides whether to be active in market

B or not, or to enter market A and B with a bundle.

We simplify this extension by making 2 important assumptions on top of the as-

sumptions Egli already makes for the decision game. Firstly, we assume that firm 2

only enters market A as a response to firm 1 tying and cannot enter A without also

entering B. And secondly, we assume that if firm 2 enters market A and B then they

must bundle their two goods27. To see the effects of this extension on the tying and

entry decisions we solve backwardly as we did in section 5 and, again, we begin with

the location-then-price subgames. We are using our same model from section 3 with

27These simplifying assumptions are made to avoid the complex issue of mixing and matching
between the two firms goods. This is an elaborate problem that goes beyond the scope of this paper.
For a good introduction to this literature see Matutes and Regibeau (1988).
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quadratic transportation costs. This extension of Egli’s game gives us the new branch

to the decision tree ”Firm 2 Enters A B Tied” as shown in figure 3:

Figure 3: Timing of the Extended Decision Game
Source: Modified from Egli (2005, p. 15)

The Subgame without Tie-in Sales: Since we are keeping the same assump-

tions as for Egli’s decision game we assume that when firm 1 does not tie fixed costs

are such that firm 2 enters market B. The fixed costs we are referring to here are the

fixed costs we have assumed are associated to producing good B. This subgame of the

decision game remains unchanged from section 5 due to our specification that firm 2

will only enter both markets and tie as a response to firm 1 tying. Therefore lemma

1 holds for this extended decision game and is reiterated here:

Lemma 128 In the subgame without tie-in sales firm 1 sets price pA = 1/2 in market

A. Both firms set the same prices p1B = p2B = t in market B. Firm 1 locates at

q1 = 0 and firm 2 at q2 = 1 in market B. Overall profits are ΠNT
1 = (1 + 2t)/4 −K

and ΠNT
2 = t/2−K.

The Subgame with Inactive Firm 2 and Tie-in Sales: This subgame is un-

changed from section 5 as well. Firm 1 will earn monopoly profits (ΠM
1 ) and charge

monopoly prices. These profits will intuitively be greater than any competitive sce-

nario for firm 1 irrespective of whether or not they tie due to the increase in demand.

28Egli (2005, p. 18) with locations modified for quadratic case findings.
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This is firm 1’s most profitable and therefore most preferred outcome.

The Subgame with Firm 2 active in market B and Tie-in Sales: This is

the last subgame that is the same as in section 5 and therefore lemma 2 holds here

again for this extended game:

Lemma 2 In the Hotelling game with tie-in sales firms set equilibrium prices p∗1 = 2/3

and p∗2 = 1/3. Both firms locate at q = 1/2. Equilibrium profits are Π∗
1 = 4/9 −K

and Π∗
2 = 1/9−K.

The Subgame with Firm 2 active in Market A and B and Tie-in Sales

by Both Firms: This is the subgame unique to our extended game. In this sub-

game, firm 1 has tied their good A and good B and so essentially is selling one bundled

good. Firm 2 has entered both markets A and B as well and tied their products in

response to firm 1. Firm 2 is therefore also, essentially, selling one bundled good.

This becomes a straight Hotelling game now. We are left with two firms, (each sell-

ing one bundled good), facing quadratic transportation costs and hence we arrive at

the Hotelling quadratic cost equilibrium of maximal differentiation29 given by lemma

3:

Lemma 3 In the Hotelling game with tie-in sales by both firms we get equilibrium

prices p∗1AB = p∗2AB = t. Firm 1 locates at q1 = 0 and firm 2 locates at q2 = 1.

Equilibrium profits are Π∗
1 = Π∗

2T = (1/2)t−K.

Now we look at firm 2’s entry decisions for stage 2 of our game. When firm

1 does not tie, we have assumed that fixed costs are such that firm 2 will always

enter market B. However, when firm 1 ties, firm 2 now has three options to consider;

remain inactive, enter market B, or enter both markets A and B with a bundle. Firm

29Again, as mentioned in section 5, for a mathematical example of this result see Tirole (1988, p.
280-281). It is proven that in this scenario ∂Π1/∂q1 < 0 and ∂Π2/∂q2 > 0 which results in maximal
differentiation.
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2 still requires that K be less than 1/9 for it to be profitable to enter only market

B. To enter both markets firm 2 requires positive profit (Π∗
2T ≥ 0) from Lemma 3,

(1/2)t−K ≥ 0. This implies that K need only be less than or equal to (1/2)t.

For firm 2 to enter both markets and bundle instead of entering only market B,

profits for entering both (from lemma 3) must be greater than profits from entering

B (from lemma 2). Therefore, for firm 2 to enter both markets it is required that:

Π∗
2T ≥ Π∗

2B

→ (1/2)t−K ≥ 1/9−K

→ t ≥ 2/9

Given these findings we present proposition 3 for firm 2’s entry decisions:

Lemma 4 In the second stage of the extended decision game, firm 2 always enters

market B when firm 1 does not tie. When firm 1 does tie firm 2,

· remains inactive in either market if K ≥ 1/9 and t < 2/9.

· enters market B and earns profits given by lemma 2 if K ≤ 1/9 and t < 2/9.

· enters both the A and B market and ties it’s products if t ≥ 2/9 as long as

K ≤ (1/2)t and earns profits given by lemma 3. This shows that it is still

possible for firm 2 to be active if K > 1/9.

Lastly, we look at firm 1’s tying decision in stage 1 given firm 2’s entry decisions

in stage 2, (outlined above by proposition 3). As we specified for this decision game,

firm 2 can only enter market A and B with a bundle in response to firm 1 bundling.

Therefore, if firm 1 does not bundle it prevents firm 2 from having the option of

entering both markets and profits are given by lemma 1 (ΠNT
1 = (1+2t)/4−K,ΠNT

2 =

(1/2)t −K). Firm 1’s tying decision is therefore based on the no tying profits from

lemma 1 compared to the profits they would earn if they tied. Firm w’s profits if

they tie must consider firm 2’s reaction to that tie. Firm 2’s reaction will be one of
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the three scenarios from proposition 3 depending on the factors of the market at that

time.

Firm 1 will always tie if K ≥ 1/9 and t < 2/9 to keep firm 2 inactive in any

market and secure monopoly profits for itself. This is the situation where firm 1 can

use tying to strategically maintain it’s monopoly position and foreclose firm 2’s sales.

If however, K ≤ 1/9 with t < 2/9 firm 2 will enter market B if firm 1 ties. In this

situation, firm 1’s tying decision is based on the comparison of it’s no tying profits

from lemma 1 (ΠNT
1 ) and it’s tying profits from lemma 2 (Π∗

1). So, firm 1 will tie if

Π∗
1 ≥ ΠNT

1

→ 4/9−K ≥ (1/2)t+ 1/4−K

→ t ≤ 7/18

Since, for this situation, we have already specified that t < 2/9 and since 2/9 < 7/18,

firm 1 will always tie when facing these fixed and transportation cost levels.

Lastly, if t ≥ 2/9 and K ≤ (1/2)t firm 2 enters both markets in response to firm

1 tying. Therefore, firm 1’s tying decision is based on the comparison of it’s no tying

profits from lemma 1 (ΠNT
1 ) and it’s tying profits from lemma 3 (Π∗

1). Firm 1 will tie

in this situation if,

Π∗
1 ≥ ΠNT

1

→ (1/2)t−K ≥ (1/2)t+ 1/4−K

As we can see the above statement can never be satisfied so firm 1 will never tie if

firm 2’s response will be to enter both markets. Again, firm 1 is able to strategically

protect it’s monopoly of market A because, as we specified, firm 2 can only enter both

markets in response to firm 1 tying. Firm 1 only needs to be aware of the values of t

and K to make this decision. This is information we expect the firms in the market

to have so this finding is very interesting. We summarize firm 1’s tying decision in

the following proposition,

Proposition 3 In our extended decision game, firm 1
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· bundles if K ≥ 1/9 and t < 2/9 (i.e., firm 2 is inactive). Firm 1 earns monopoly

profits ΠM
1 .

· bundles if K ≤ 1/9 and t < 2/9 (i.e., firm 2 is active in market B). The firms

set prices and earn profits given by lemma 2.

· does not bundle if K ≤ (1/2)t and t ≥ 2/9 (i.e., firm 2 would have entered A

and B if firm 1 had tied). The firms set prices and earn profits given by lemma

1, the no tying case.

· bundles if K ≥ (1/2)t and t ≥ 2/9 (i.e., firm 2 is inactive). Firm 1 earns

monopoly profits ΠM
1 .

Again, tying by firm 1 can foreclose firm 2’s sales to the point where operation is

unprofitable shown in the first and last bullet of the above proposition. This result

is also found in the decision game of section 5. Also, same as section 5 finds, when

K ≤ 1/9 and t < 2/9, firm 2’s profits increase by firm 1 tying. This is again because

firm 2’s profits without tying depend on t and when t is low enough, (< 2/9), profits

are greater when they do not depend on t, which is the case when firm 1 ties. What is

unique about our extension is that now, when K ≤ (1/2)t and t ≥ 2/9 firm 2 would

choose to be active in both markets if they had the option. However, not tying by

firm 1 will protect its monopoly position and profits in market A. In this situation

(point 3 of proposition 3) firm 1 will never tie and firm 2 will never be able to enter

market A in response to that tying. It turns out though, in this case, that firm 1 not

tying does not affect firm 2’s profits. In the tying and no tying case here firm 2 would

earn Π2 = (1/2)t−K.

7 Conclusions

The purpose of this paper was to add to the understanding of the monopoly tying

decision when we endogenize the product differentiation choice. To do this we first
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evaluate the robustness of Egli’s linear cost model of tying with product differentiation

by setting up and evaluating the quadratic cost equivalent. We find that the quadratic

costs give us different demand equations for the hinterland regions but despite this

difference we arrive at the same total demand equations as does Egli with linear costs.

So we conclude that the linear cost pure tying demand equations are robust and we,

like Egli, get the result of minimal differentiation in the pure tying case.

Next, in evaluating his decision game, Egli restricts his strategy space so that the

minimal distance between the locations firms can choose is 1/2. This is not necessary

when the model is evaluated with quadratic costs as we have done. This discontinuity

of the profit function and the solutions to get around this dicontinuity, (quadratic

costs or restricted strategy space), were found by D’Aspremont, Gabszewicz, and

Thisse (1979). Using quadratic costs slightly augments the model to sidestep the

problem linear costs present. We find that when using quadratic costs instead of

restricting the strategy space for linear costs, different equilibrium locations for two

of the subgames than Egli are found. We find in the no tying subgame that firms

maximally differentiate and locate at q1 = 0 and q2 = 1 where Egli concludes that

q1 = 1/4 and q2 = 3/4. For the “active firm 2 with tie-in sales” subgame we, with

quadratic costs, do not restrict our strategy space and find that equilibrium q1 and q2

both equal 1/2 as opposed to Egli’s q1 = 1/4 and q2 = 3/4. Table 1 summarizes the

differences in the differentiation findings between Egli (linear transportation costs)

and McMahon (quadratic transportation costs):

Table 1: Differentiation Findings Summary

Tying and Entry Case Egli McMahon

A. Tying firm 1, firm 2 in market B only Minimal Diff. Minimal Diff.
B. No tie firm 1, firm 2 in market B only Minimal Diff. Maximal Diff.
C. Both firms tie, both firms in market A and B —— Maximal Diff.

Despite our differences in locations from Egli we find that his profit equations for

each subgame still hold with the new locations. We conclude that his findings for
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firm 1’s tying decision and firm 2’s entry decision are robust. Therefore, all of Egli’s

decision game findings for the linear model hold for the quadratic model. He finds

that tying always forecloses firm 2’s sales. When K ≥ 1/9 this foreclosure makes

operation unprofitable for firm 2 and by tying, firm 1 gains monopoly power in the

market. However, there is a scenario where firm 1 tying foreclose’s firm 2’s sales but

at the same time increases firm 2’s profits. This is when K ≤ 1/9 and t < 2/9.

Lastly, we extend Egli’s decision game to allow firm 2 to enter market A and B and

tie it’s goods in response to firm 1 tying. For our extended decision game we find that

the three subgames and resulting lemmas from the original quadratic decision game

still hold. We find that our extension of this decision game gives us an additional

subgame which is the “both firms enter both markets and tie” subgame. In this

subgame we evaluate it as an original Hotelling model with two firms and quadratic

costs and arrive at maximum differentiation as the equilibrium. We then solve the

decision game for firm 1 tying and find that, in this extended game, firm 1 still has

the power to foreclose firm 2’s sales. Firm 1 has the ability to keep firm 2 inactive and

earn monopoly profits for the same situations as the original decision game mentioned

above. Firm 1 tying can still increase firm 2’s profits if, as explained already, K ≤ 1/9

and t < 2/9. The difference we find now is that firm 1 has the option of not tying

to prohibit firm 2 from entering the primary market A. It is profitable for firm 2 to

do this if K ≤ (1/2)t and t ≥ 2/9. In this case firm 1 will never tie because its tying

profits ((1/2)t−K) would be less than its non-tying profits ((1/2)t+ 1/4−K).
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