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Abstract

Kolstad�s (1994) model of intertemporal, competitive supply
to a linear market from two distinct exhaustible resource deposits
admits two di¤erent interior solutions � one with the low cost
deposit "earning" the higher resource rent and the other with the
low cost deposit "earning" the lower resource rent. This latter
outcome turns on the initial size of the low cost deposit being
signi�cantly larger than the high cost deposit. We infer then
that size can trump quality in the determination of the resource
rent for a deposit, when geography is explicit.

� key words: exhaustible resource extraction, deposit quality,
linear market

� highlights: lower cost deposits earning less rent>, resource
extraction in a linear market>,evolution of market sizes>.
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1 Introduction

Kolstad�s (1994) model of intertemporal, competitive supply to a linear

market from two distinct exhaustible resource deposits admits two dif-

ferent interior solutions �one with the low cost deposit "earning" the

higher resource rent and the other with the low cost deposit "earning"

the lower resource rent. This latter outcome turns on the initial size of

the low cost deposit being larger than the high cost deposit. We infer

�Gerard Gaudet provided comments to an earlier draft which put this research
back on track. We are much indebted to him.
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then that deposit size can trump in situ quality in the determination

of the resource rent for a deposit. Such valuation scenarios have not

appeared in aspatial Hotelling (1931) models with deposits of distinct

qualities (eg. Her�ndahl (1967)).1 Our result does not turn on the rela-

tive accessibility of di¤erent deposit to markets. Accessibility would be

a third factor, in addition to quality and deposit size, in the determi-

nation of resource rent and we have nothing to say about accessibility

per se below. We proceed below to spell out the details of Kolstad�s

model and to work through in detail four complete numerical examples,

the �rst a numerical rendering of the case Kolstad chose to analyze in

his article (our Case A: the small, low-cost deposit is extracted from

along with the larger high-cost deposit and the small, low-cost deposit

is exhausted in a Phase I). Our other three cases are distinctly di¤er-

ent versions of Kolstad�s model. We distinguish then below among the

Kolstad model, Kolstad�s solution, our Case C solution, with the low

cost deposit "earning" the lower resource rent, our Case B, with the low

cost deposit "earning" the higher resource rent and our Case D, with a

high-cost deposit of relatively small size.

A principal merit of Kolstad�s spatial framework is that it allows for

solutions with deposits of distinctly di¤erent qualities in situ supply-

ing to a market at the same time. Morris Adelman among others has

contended that Hotelling extraction theory was pretty well useless for ex-

plaining real-world oil extraction scenarios because such theory could not

account for real-world supply �ows emanating simultaneously from de-

posits of obviously distinct qualities (Adelman and Watkins (1992) and

Cairns and Davis (2001)). The introduction of geography to Hotelling�s

framework,2 along the lines of Kolstad (1994), turns out to be a sim-

1Nordhaus (1973) worked with a complicated Her�ndahl model with deposits and
demanders at di¤erent points on the surface of the earth. Buried in Nordhaus�s
empirical work should be a realization of the valuation phenomenon we are focusing
on here.

2Gaudet, Moreaux, and Salant (2001) deal with exhaustible resource extraction
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ple way to extend Hotelling extraction theory to a theory that deals

satisfactorily with the Adelman problem. In addition, the introduction

of explicit space allows one to move beyond the standard result that

lowest-cost deposits "earn" highest resource rents.

The model has propective buyers of a unit of say oil located in uni-

form density on a linear market. Stocks are located at each end of

the �nite line, the right-hand one generally with lower, unchanging unit

extraction cost. At each instant, resource rent at each supply point is ris-

ing at the rate of interest (Hotelling�s zero pro�t intertemporal arbitrage

condition). In Phase I, the market is split between competitive suppliers

(think of each unit of stock owned by a distinct price-taking �rm) by a

delivered price, the same for each "supplier" (Cases B, C and D). This

delivered price rises smoothly as time passes to an exogenously-set choke

price, p. At this date, Phase II opens with each "supplier" supplying to

an own-market with an "edge" delivered-price at the choke price. A hole

has opened in the "center" of the market and this hole grows steadily

as time passes, with rents continuing to rise at the rate of interest. Re-

source rent at Right (R) rises to p� cR at the instant of exhaustion and
Left�s rises to p � cL at its instant of exhaustion, for ci unit extraction
cost for "supplier" i: For Case B (Right with unit costs distinctly lower

and a stock size somewhat larger) we observe R with higher resource

rent and an ever-contracting spatial market. For Case C (R and L with

similar unit costs of extraction (R�s lower) and R�s stock size signi�-

cantly larger than L�s), we observe that R�s resource rent is lower and

her market-size is steadily expanding in Phase I. Market sizes for each

"supplier" always contract in Phase II as time passes. Resource rent at

each site rises smoothly at the rate of interest for both "suppliers" over

both phases. There is no jump in rent or price at the date of the change

in phases.

in a two dimensional space.
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2 The Analysis

Our setting is supposed to be competitive and thus one should consider

each unit of resource owned and supplied by a price-taking �rm. We

have used the word "supplier" above in the sense that supply is �owing

out of a particular deposit but one should keep in mind that our setting

is supposed to be truly competitive, with quantity supplied at a moment

of time being "organized" by many small, price-taking �rms.

Our linear market is of length G: Demanders are located on the line

in uniform density. Each buyer buys one unit per unit time at the

delivered price as long as this price is less than or equal to the cut-o¤

or choke price, p:We normalize so that distance is the same as quantity

supplied.3 Hence if QL(t) is being supplied at an instant, the size of

L�s (left�s) linear market is QL(t) in units of distance. At each end, we

have the left supplier indicated by L and right supplier indicated by

R: Demanders buy a unit at delivered price, pim + �u
i when located at

distance ui from supplier i: i = L;R: pim is the mill price or price at the

site of extraction. � is transportation cost per unit per unit distance. ci

is the unit extraction cost for supplier i: When extraction costs di¤er,

we deal consistently with cR < cL: That is, R has the high quality stock

in situ.

Benchmark results.

CHANGE IN STOCK SIZE:

Consider the symmetric case (cR = cL and stock sizes (SL0 and s
R
0 )

equal and selected so that each market size is initially at G=2). We have

then split price, pS equal to the choke price p initially for

pS(0) = pLm(0) + �
G

2
= pRm(0) + �

G

2
= p;

for pLm(0) and p
R
m(0) mill prices at L and R respectively. The split-price

3If u(t) is distance from the left supplier to its right hand market edge, then left�s
current demand is �u(t) for � uniform density of demanders on the line. We set � = 1
making current quantity demanded for the left supplier, QL(t) equal to �u(t):
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is that which is dividing the whole market between the two suppliers at

an instant. Beyond time zero, the resource rent at each site, pLm(t)� cL

and pRm(t)� cR respectively, is rising at rate r and a hole is opening up
in the center of the market as each supplier�s market shrinks gradually,

reaching zero at the instant rents reach p � cL and p � cR for L and R
respectively. r is the market rate of interest and becomes the e¤ective

discount rate in our analysis.

We now add a small amount to R�s initial stock and re-solve our

supply problem. The new initial split-price will be below p and to the

left of its counterpart above. R�s initial rent will now be less than L�s

initial rent. The more abundant stock for R implies a lower value per

unit. The new supply scenario will have two phases. Over each phase

each supplier�s rent will be rising at rate r and there will be no jumps.

Over Phase I, the market will be fully supplied by the two "outputs"

from the two suppliers and split-price will rise to p at time T. See Figure

1.
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L�s market size will be contracting over Phase I.4 Phase II opens with

a small hole opening in the "center" of the market and over Phase II

each supplier�s market size shrinks, reaching zero at the instant rents

reach p � cL and p � cR for L and R respectively. Each initial stock is
exhausted at the instant that respective rents reach p � cL and p � cR:
The duration of Phase II will in general di¤er for the two suppliers. At

time zero, R�s mill price will be lower and it will have the larger of the

two market shares. As time passes its market share will be rising.

When one thinks about actually solving such a problem, one should

work backwards in time from each supplier�s end point. The determina-

tion of the split point in the market for the beginning of Phase II will

be endogenous.

CHANGES IN EXTRACTION COSTS:

Our reference case is the symmetric one set out above. Now we

consider cR declining from its value when cR = cL: The new initial split-

price will be below p and to the left of its counterpart above. R�s initial

rent will now be larger than L�s initial rent. The higher quality for R�s

stock implies a higher value per unit. The new supply scenario will have

two phases. Over each phase each supplier�s rent will be rising at rate

r and there will be no jumps. Over Phase I, the market will be fully

supplied by the two "outputs" from the two suppliers and split-price will

rise to p at time T. L�s market size will be expanding, in this case, over

Phase I. Phase II opens with a small hole opening in the "center" of the

market and over Phase II each supplier�s market size shrinks, reaching

zero at the instant rents reach p�cL and p�cR for L and R respectively.
Each initial stock is exhausted at the instant that respective rents reach

p� cL and p� cR: The duration of Phase II will in general di¤er for the
two suppliers.

These are two basic comparative statics exercises that can guide our

4This follows from the fact that R�s initial rent has become smaller than L�s and
each rent must rise at rate r over Phase I.

6



intuition for our following four cases.

3 Case A (Kolstad): Small High-quality Initial Stock

In Phase I, of length T; the full market is being supplied by both suppliers

with the markets separated by split-price,

pS(t) = pLm(t) + �Q
L(t) = pRm(t) + �[G�QL(t)]:

At each date mill price pim = c
i+�i(t) for �i(t) the current resource rent

at the site of deposit i. Phase I ends with QR(T ) = SR(T ) = 0 and

QL(T ) = G: There will be a delivered price at date T with p(T ) =

cL + �L(T ) + �G at the market edge at G.

Consider an example.

We assume cR = 1:0; cL = 2:9; r = 0:1; � = 0:1 and G = 40: We

proceed to �x L�s stock size which she puts on the market in Phase I

at 110 units and to solve for R�s initial stock, SR0 which solves Phase I

correctly (L�s initial market size grows over the interval to G).

We have then rents in Phase I

�L(t)= [p� �QLT � cL]e�r[T�t]

and �R(t)= [p� �[G�QLT ]� cR]e�r[T�t]:

We substitute these rents into the split-price relation to obtain

QL(t) =
1

2�
f[cR + �G� cL]f1� e�r[T�t]g+ 2�QLT e�r[T�t]g:

Recall that the value of QLT is set at G. Hence we can solve for T in

SL0 = 110 =
R T
0
QL(t)dt: We integrate

R T
0
QL(t)dt and obtain

SL0 =

�
cR + �G� cL

2�

�
T � (1� e�rT )

�
cR + �G� cL � 2�QLT

2�r

�
:

For SL0 = 110;we obtain T = 3:06323: Since TG = SL0 + S
R
0 and have

solved for T; we have a value for R�s total sales over Phase I, namely
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SR0 = 12:5292. Hence we have obtained SR0 as a function of SL0 : We

obtain QL(0) = 32:2164; and with QLT = 40; we have

�L(0)= [p� �QLT � cL]e�3:06323r = 3:7544

and �R(0)= [p� �[G�QLT ]� cR]e�3:06323r = 8:0976:

The relatively large initial rent for R implies, given each rent rising at

rate r; that R�s market will be shrinking as time passes. Given the values

for initial rents, we have the prices, pR(0) = 9:0976 and pL(0) = 6:6544:

Beyond T;marking the end of Phase I, is Phase II with L supplying alone

in the market, an amount QL(t) = G at each instant until delivered price

reaches p: Phase II ends with L�s delivered price reaching p: Her rent is

rising smoothly over Phase II at rate r: In Phase III, L�s rent continues

to rise at rate r and her market size is shrinking smoothly, with delivered

price at her market edge being p at each instant. Phase III ends with

QL(t) and SL(t) each reaching zero.5

We solved our example by �xing L�s amount of stock to be put on the

market in Phase I at 110 units. A more satisfactory approach and more

di¢ cult to execute would have R and L�s total stocks set initially and the

supply paths worked out backwards from the �nal date of L�s supply.

In this case, L�s amount of stock to be put on the market in Phase

I would be endogenous. Such a somewhat more satisfactory solution

would be qualitatively unchanged from ours above. Clearly our approach

to solving has the merit of relative simplicity. We employ a variant of

this approach in our analyses below.

Our example above is the same, in a qualitative sense, as the one

reported by Kolstad (1994). It can be characterized as having the low-
5If L were alone in the market (R with initial stock of zero units) and we worked

back from the end over two phases, we would run into the cookie-cutter problem:
L�s stock would not �t precisely in the time slots and its QL(0) would not equal
G in general. However, once we have R with some stock, we can, with reasonable
parameters, eliminate the cookie-cutter problem.

8



cost supplier "move �rst" (here in fact simultaneous with the high-cost

producer) and exhaust her relatively small stock (low-cost) in a Phase

I. Each supplier�s rent in situ is rising at rate r in Phase I and the

phase ends with the low-cost supplier exhausting her initial stock just

as the high-cost supplier is about to supply to all demanders in the

linear market. Kolstad did not inquire about cases with each supplier

with an initial stock of a similar size or about cases with the low-cost

supplier having a much larger initial stock. These variants are not trivial

extensions of our "base case" above. We turn to these novel variants.

4 Case B: Similar stock sizes, Distinctly di¤erent
qualities

In Phase I, of length T; the full market is being supplied by both suppliers

with the markets separated by split-price,

pS(t) = pLm(t) + �Q
L(t) = pRm(t) + �[G�QL(t)]:

At each date mill price pim = ci + �i(t) for �i(t) the current resource

rent at the site of deposit i. Phase I ends with pS(T ) = p: Hence over

the interval 0 to T; the delivered split-price rises for each supplier to its

terminal value, p: The split in the market is de�ned by quantity QL(t);

current supply of L. The other portion of the market is then G�QL(t)
and is current output from R. At the end of this initial phase, we observe

L supplyingQLT and R supplyingG�QLT :Over this �rst Phase we indicate
SL0 and S

R
0 as total supply put on the market from L and R respectively.

Total initial stocks are then KL and KR:

In Phase II, there are positive amounts of each stock remaining,

namely eSL = KL� SL0 and eSR = KR � SR0 : Beyond T; a hole opens
smoothly in the "center" of the market (QL(t) declines from QLT and

QR(t) declines from G�QLT ) as each supplier has her market size shrink
smoothly with delivered price at the spatial margin for each market re-

9



maining at p: Rent at the supply point continues to rise at the rate of

interest for each supplier. eSL and eSR each are exhausted at the moment
that rent for L reaches p� cL and rent for R reaches p� cR; respectively.
The durations of exhaustion for eSL and eSR will be di¤erent in general.
Hence it is correct to say that each supplier has a Phase II of di¤erent

length.

An easy way to �ll in details of our equilibrium is to �rst treat eSL as
exogenous with SL0 = K

L � eSL and eSR and SR0 as endogenous. In this
approach one has eSR and SR0 functions of eSL: (Later one obtains the
complete solution by relaxing the assumption of eSL as exogenous. One
then has each of eSR, SR0 and SL0 as endogenous, with eSR+ SR0 = KR

and eSL + SL0 = KL :)

Detailed analysis: We start in Phase II with eSL exogenous. We are
solving back from end dates. Market size for L de�ned by QL(t) satis�es

at each instant

cL + �L(t) + �QL(t) = p

with �L(t) = [p�cL]e�r[eTL�t] for eTL the duration of Phase II for L. Hence
QL(t) = p�cL

�

h
1� e�r[eTL�t]i : Given R eTL

0
QL(t)dt = eSL; we can solve for

the value of eTL and the value of QL(t) at the beginning of Phase II.
Upon integrating

R eTL
0
QL(t)dt; we obtain

eSL = p� cL
�

�eTL + 1
r
(e�r

eTL � 1)
�
:

We proceed with a numerical example. Let G = 40; � = 0:1; cR = 1;

cL = 2:9; eSL = 24; p = 12; and KL = 31:6 Solving yields

eTL=2:38806
and QLT =19:33133:

6Observe that cR + �G = 5 and this exceeds cL = 2:9: This is a condition which
Kolstad imposes in order that the right-hand supplier not under-cut the left-hand
supplier in terms of costs. More on this below.
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This latter quantity we write as QLT for T the length of Phase I. Our

solved QLT is about half the whole market. Q
L
T is de�ning the market

split point at the end of Phase I.

With regard to R, we have her rent at the end of Phase I as

�R(T ) = [p� �[G�QLT ]� cR]:

This rent must equal the discounted rent at the end of Phase II, namely

[p � cR]e�r eTR for eTR the length of Phase II for R. Given QLT ; we solve
for eTRin eTR = �1

r
ln

�
[p� �[G�QLT ]� cR]

[p� cR]

�
:

We obtain eTR = 2:08128 and
eSR = p� cR

�

�eTR + 1
r
[e�r

eTR � 1]
�
= 22:2542:

eSR is the sum of sales for R in Phase II. This is a value for eSR as a
function of eSL; this latter exogenous for the moment.7
We turn to Phase I.

Over Phase I, the sum of sales from the two suppliers �lls the market

of length G at each instant. In Phase I, the markets are separated at

distance QL(t) at each moment by split-price,

pS(t) = pLm(t) + �Q
L(t) = pRm(t) + �[G�QL(t)]:

At each date mill price pim = c
i+�i(t) for �i(t) the current resource rent.

This rent is assumed to be rising at the rate of interest, r:We have then

rents in Phase I

�L(t)= [p� �QLT � cL]e�r[T�t]

and �R(t)= [p� �[G�QLT ]� cR]e�r[T�t]:
7 eTR = 2:08128 can be read as Phase II involving about 2 time periods, in discrete

time, for R. R�s supply in its second-to-last period is then about 40-19:33133 �= 20:7;
leaving about 1.6 units to put on the market in its �nal period.
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We substitute these rents into the "split price" relation to obtain

QL(t) =
1

2�
f[cR + �G� cL]f1� e�r[T�t]g+ 2�QLT e�r[T�t]g:

Recall that the value of QLT has been solved for in Phase II, above.

Hence we can solve for T in SL0 = K
L � eSL = R T

0
QL(t)dt: We integrateR T

0
QL(t)dt and obtain

SL0 =

�
cR + �G� cL

2�

�
T � (1� e�rT )

�
cR + �G� cL � 2�QLT

2�r

�
:

For SL0 = 7;we obtain T = 0:36511: Since TG = SL0 + S
R
0 and have

solved for T; we have a value for R�s total sales over Phase I, namely

SR0 = 7:6046. Hence we have obtained S
R
0 as a function of eSL: Note then

that KL = 24 + 7 and KR = 22:2542 + 7:6046: Hence total stocks put

on the market di¤er by only about one unit for the two suppliers or the

size of each deposit is about the same at time zero.

Initial rents work out to be

�L(0)= [p� �QLT � cL]e�0:36511r = 6:9099

and �R(0)= [p� �[G�QLT ]� cR]e�0:36511r = 8:6129

and the initial quantity extracted by L is 19.0147 and by R is (40-

19.0147).8

Note that the point of market split in Phase I is moving TO THE

RIGHT, from 19.0147 initially to 19:33133 at date T . This type of

motion is a direct consequence of �R(0) > �L(0) and subsequent rents

moving up at r%: (A simple sketch establishes this.)

There are no loose ends to our analysis above. However, matters

were much simpli�ed by our taking eSL and SL0 as exogenous and SR0 andeSR as endogenous. Conceptually, it is easy to now dispense with this
8We have veri�ed that when these initial rents rise at r% over the combined time

intervals for the two phases, we get the correct terminal rents.
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crutch. Suppose now that we have eSL and SL0 only to be positive and
sum to 31, and SR0 + eSR equal to say 31; with each positive: 31 is close
to the sum of SR0 and eSR that we observed above (22:2542 + 7:6046).
Hence one can envisage a brute for search over values of eSL near 24 (with
SL0 + eSL = 31) that in fact brings the sum of SR0 and eSR; endogenous
still, to the exogenously set value of 31. We would then have a solution

devoid of the "pre-cooking" of the values of eSL and SL0 .9
5 Case C: Similar Stock Qualities and Sizes

It turns out to be straightforward to change our parameters to obtain an

"inverse" of the above case, one now with the low-cost supplier "pushing"

the point of market split to the left and "earning" a LOWER RENT

initially in situ. A parameter change that works is simply bringing the

two extraction costs close (cL = 2:9 and cR = 2:8 and following the same

solution steps as with Case B. This change leads to R putting a larger

amount on the market in Phase I).10

With cR equal now at 2.8 (up from 1.0), we can solve in this case foreTRin [p�cR]e�r eTR = [p��[G�QLT ]�cR]; obtaining 2:5445: (Recall that
QLT = 19:3313:) This leads to a new value for eSR; namely 27.41 (up from
the earlier value of 22:2542). The new value for T solves out as 0.36205.

R�s total supply in Phase I comes out as 7.482 (=SR0 ). Hence K
L is the

same at 40 units andKR is now 27.41+7.482�= 35; up from 30 for Case B.
9It appears that it would not be di¢ cult to specify parameters a priori that would

be incompatible with an interior solution of the type we have spelled out. This is
probably generic to equilibria with demand speci�cations with choke prices.
10Recall that above at the beginning of Phase II, we had

�L(T ) = [p� �QLT � cL]
and �R(T ) = [p� �[G�QLT ]� cR]:

Since each of these values gets discounted at the same rate and over the same interval
in order over Phase I, we see that �L(T ) > �R(T ) will lead to �L(0) > �R(0): We
solved for QLT = 19:33133 above, less than half of market size at 40. Hence inspection
of �L(T ) and �R(T ) above reveals that if cR were only a small amount less than cL;
we would have �L(T ) > �R(T ): This is our cue for re-solving.
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And our choice of cR gives us �L(0) = 6:912; a value GREATER THAN

�R(0) = 6:8795: These values go along with L�s market CONTRACTING

over Phase I (from 19.3373 initially to 193313). We infer that we that a

relative abundance e¤ect has yielded our reversal of results in this case

from results for Case B: here the similarity in extraction costs and larger

initial stock for R has yielded a lower resource rent for R�s deposit.11

Cases B and C illustrate the new economics in this contribution: in

a spatial framework, the high quality stock can be "earning" a lower

resource rent in situ because a relative stock size e¤ect is trumping a

relative quality e¤ect.

6 Case D: Small Initial High-cost Stock

The idea here is that the low-cost stock should be extracted from �rst,

a variant of the Her�ndahl scenario. R should be the lone supplier

over a positive interval, with a market size G, and then the high-cost

stock should "enter". Then both exhaust in some kind of end scenario.

Central is the idea that each supplier�s rent should be rising over time

at the rate of interest, ideally free of jumps that might induce suppliers

to game possible jumps to the advantage of one or both. We consider

then a Phase I with R alone with supply G at each instant. A Phase II

opens with the high-cost supplier entering with an in�nitesimal supply

while the low-cost supplier supplies the remaining part of the market.

Gradually over Phase II, the high-cost supplier�s market expands while

split-price rises to p: This ends Phase II. Over Phase III, each supplier�s

market contracts smoothly to zero and each exhausts when rent reaches

p � cL for L and p � cR for R. Note Phase III will in general be of a
di¤erent duration for L and R. Our detailed solving turns up a variant

of this solution, only slightly di¤erent.

11Clearly our initial rents for Case C di¤er by a small amount and the shift in the
point of market split over Phase I is small. These crucial magnitudes become larger
as our exogenously set value for SL0 is increased from its current value of 7 units.
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Solving this case follows the steps for Case B above exactly but now

with a relatively small stock size for L. We set cL = 4:9 and cR =

0:901:12 We work back in time. For Phase III, we set L�s terminal,

aggregate supply small, namely 16 units. We invoke rent shrinking at

r%: This leaves L with 14.0259 units of 40 (size of G) at the beginning

of Phase III. L�s time in Phase III is 2.20083 and R�s time is 2.6660.

R is putting 36.16034 units on the market in Phase III. Now for Phase

II. We work back with QLT = 14:0259. Working back involves selecting

a trial value for L�s supply for Phase II and observing how close the

corresponding initial supply from R is to G. Repeated trials reveal that

this initial supply from R is asymtotically approaching G (=0.005) as

L�s corresponding supply is increased. For L�s supply at 190 units for

Phase II, R�s QR(t) is G� 0:005000: For this solution13 each initial rent
is in�nitesimal with �R(t) (=2.82�10�432)> �L(t) (=1.89�10�432): R�s
supply over this interval is 398,138.0 units.

We arrived at this solution after (a) observing that we needed cL �
cR �= �G and (b) re-solving for larger and larger values of L�s supply in
Phase II. Clearly this solution is the one we expect (or hope for) in a

qualitative sense but its asymptotic nature is surprising.

7 Concluding Remark

Kolstad worked with one solution to his model (our Case A above; small

high-quality initial stock) and left open how other solutions might work

or not work. We have investigated three other types of solution to his

model and have turned up three new results. First, other cases do indeed

have fairly regular solutions within his framework. Secondly, the "oppo-

site" to his case (small initial low-quality stock) has a well-behaved solu-

tion from an economics perspective but displays a somewhat ill-behaved

12These costs di¤er by almost exactly �G: This turns out to matter.
13The value QL(t) = 0.0050 that is being reached depends on our choice of gap

size, [cR + �G]� cL: This has magnitude 0.0010 in our example. The smaller we set
this gap, the smaller is the value of QL(t) being approached, backwards in time.
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solution from a numerical perspective (the solution is asymptotic). Third

and most important, we observed regular cases in which the high qual-

ity deposit ends up "earning" a lower resource rent. We inferred that

relative abundance was the force driving down resoure rent for this case

(our Case C).

We observe then that Hotelling extraction theory "goes through"

in a simple spatial setting (Kolstad�s model) but one new phenomenon

obtains, namely the possibility of a high quality deposit "earning" lower

resource rent.
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