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Abstract

There are many bootstrap methods that can be used for econometric analysis. In
certain circumstances, such as regression models with independent and identically
distributed error terms, appropriately chosen bootstrap methods generally work very
well. However, there are many other cases, such as regression models with dependent
errors, in which bootstrap methods do not always work well. This paper discusses a
large number of bootstrap methods that can be useful in econometrics. Applications
to hypothesis testing are emphasized, and simulation results are presented for a few
illustrative cases.
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1. Introduction

Bootstrap methods involve estimating a model many times using simulated data.
Quantities computed from the simulated data are then used to make inferences from
the actual data. The term “bootstrap” was coined by Efron (1979), but bootstrap
methods did not become popular in econometrics until about ten years ago. One ma-
jor reason for their increasing popularity in recent years is the staggering drop in the
cost of numerical computation over the past two decades.

Although bootstrapping is quite widely used, it is not always well understood. In
practice, bootstrapping is often not as easy to do, and does not work as well, as seems
to be widely believed. Although it is common to speak of “the bootstrap,” this is a
rather misleading term, because there are actually many different bootstrap methods.
Some bootstrap methods are very easy to implement, and some bootstrap methods
work extraordinarily well in certain cases. But bootstrap methods do not always work
well, and choosing among alternative ones is often not easy.

The next section introduces bootstrap methods in the context of hypothesis testing.
Section 3 then discusses methods for bootstrapping regression models. Section 4 deals
with bootstrap standard errors, and Section 5 discusses bootstrap confidence intervals.
Section 6 deals with bootstrap methods for dependent data, and Section 7 concludes.

2. Hypothesis Testing

Suppose that τ̂ is the realized value of a test statistic τ . If we knew the cumulative
distribution function (CDF) of τ under the null hypothesis, say F (τ), we would reject
the null hypothesis whenever τ̂ is abnormal in some sense. For a test that rejects in
the upper tail of the distribution, we might choose to calculate a critical value at level
α, say cα, as defined by the equation

1− F (cα) = α. (1)

Then we would reject the null whenever τ̂ > cα. For example, when F (τ) is the χ2(1)
distribution and α = .05, cα = 3.84.

An alternative approach, which is preferable in most circumstances, is to calculate the
P value, or marginal significance level,

p(τ̂) = 1− F (τ̂), (2)

and reject whenever p(τ̂) < α. It is easy to see that these two procedures must yield
identical inferences, since τ̂ must be greater than cα whenever p(τ̂) is less than α.

In most cases of interest to econometricians, we do not know F (τ). Until recently,
the usual approach in such cases has been to replace it by an approximate CDF, say
F∞(τ), based on asymptotic theory. This approach works well when F∞(τ) is a good
approximation to F (τ), but that is by no means always true.

The bootstrap provides another way to approximate F (τ), which may provide a better
approximation. It can be used even when τ is complicated to compute and difficult
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to analyze theoretically. It is not even necessary for τ to have a known asymptotic
distribution.

In order to perform a bootstrap test, we must generate B bootstrap samples, indexed
by j, that satisfy the null hypothesis. A bootstrap sample is a simulated data set.
The procedure for generating the bootstrap samples, which always involves a random
number generator, is called a bootstrap data generating process, or bootstrap DGP.
Bootstrap DGPs for regression models will be discussed in the next section.

For each bootstrap sample, we compute a bootstrap test statistic, say τ∗j , usually (but
not always) by the same procedure used to calculate τ̂ from the real sample. The
bootstrap P value is then

p̂∗(τ̂) =
1
B

B∑

j=1

I(τ∗j > τ̂), (3)

where I(·) denotes the indicator function, which is equal to 1 when its argument is
true and 0 otherwise. Equation (3) can also be written as

p̂∗(τ̂) = 1− F̂ ∗(τ̂), (4)

where F̂ ∗(τ) denotes the empirical distribution function, or EDF, of the τ∗j . If we let
the number of bootstrap samples, B, tend to infinity, then F̂ ∗(τ) tends to F ∗(τ), the
true CDF of the τ∗j .

The bootstrap P value (4) looks just like the true P value (2), but with the EDF of
the bootstrap distribution, F̂ ∗(τ̂), replacing the unknown CDF F (τ̂). From this, it
is clear that bootstrap tests will generally not be exact. That is, the probability of
rejecting the null at level α will generally not be equal to α. Most of the problems
with bootstrap tests arise not because F̂ ∗(τ) is only an estimate of F ∗(τ) but because
F ∗(τ) may not be a good approximation to F (τ).

The bootstrap P value (3) is appropriate if we wish to reject the null hypothesis
whenever τ̂ is sufficiently large and positive. However, for a quantity such as a t
statistic, that can take on either sign, it is generally more appropriate to use either

p̂∗s (τ̂) =
1
B

B∑

j=1

I(|τ∗j | > |τ̂ |), (5)

or, alternatively,

p̂∗ns(τ̂) = 2min
(

1
B

B∑

j=1

I(τ∗j ≤ τ̂),
1
B

B∑

j=1

I(τ∗j > τ̂)
)

. (6)

In equation (5), we implicitly assume that the distribution of τ̂ is symmetric around
zero. In equation (6), however, we make no such assumption. The factor of 2 in (6) is
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necessary because there are two tails, and τ̂ could be far out in either tail by chance.
Without it, p̂∗ns would lie between 0 and 0.5. There is no guarantee that p̂∗s and p∗ns

will be similar. Indeed, if the mean of the τ∗j is far from zero, they may be quite
different, and tests based on them may have very different power properties. Unless
the sample size is large, tests based on p̂∗s will probably be more reliable, under the
null hypothesis, than tests based on p̂∗ns.

2.1 Monte Carlo tests

There is an important special case in which bootstrap tests are exact. For this result
to hold, we need two conditions:

1. The test statistic τ is pivotal, which means that its distribution does not depend
on any unknown parameters.

2. The number of bootstrap samples B is such that α(B + 1) is an integer, where α
is the level of the test.

When these two conditions hold, a bootstrap test is called a Monte Carlo test. It is
not difficult to see why Monte Carlo tests are exact. By condition 1, τ̂ and the τ∗j all
come from the same distribution. Now imagine sorting all B + 1 test statistics. If τ̂ is
one of the largest α(B + 1) statistics, we reject the null. By condition 2, this happens
with probability α under the null hypothesis. For example, if B = 999 and α = .05,
p̂∗(τ̂) will be less than .05, and we will consequently reject the null, whenever τ̂ is one
of the 50 largest test statistics.

Monte Carlo tests can be applied to many procedures for testing the specification of
linear regression models with fixed regressors and normal errors. What is required is
that the test statistic depend only on the least squares residuals and the regressors,
and that it not depend on the variance of the error terms. Examples include Durbin-
Watson tests and many other tests for serial correlation, tests for ARCH errors and
other forms of heteroskedasticity, and Jarque-Bera tests and other tests for skewness
and excess kurtosis.

Suppose that X denotes a matrix of fixed regressors and ε a vector of independent,
standard normal random variables. All of the test statistics mentioned in the previous
paragraph depend solely on the OLS residual vector MXε, where MX is the projection
matrix I − X(X>X)−1X>, and perhaps on X directly. Since we know X, we can
generate bootstrap test statistics that follow the same distribution as the actual test
statistic under the null. We simply draw the εt as independent standard normal
random variates, regress them on X to obtain the vector of residuals MXε, and then
calculate the test statistic as usual.

When the normality assumption is false, Monte Carlo tests for serial correlation that
incorrectly assume it should still be very accurate (although not exact), but Monte
Carlo tests for heteroskedasticity may be quite inaccurate. Of course, if there were a
reason to assume some distribution other than the normal, the test procedure could
easily be modified to generate the εt from that distribution.
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When performing a Monte Carlo test, the penalty for using a small number of bootstrap
samples is loss of power, not loss of exactness. The smallest value of B that can be
used for a test at the .05 level is 19. The smallest value that can be used for a test
at the .01 level is B = 99. Unless computation is very expensive, B = 999 is often a
good choice.

It is possible to perform exact Monte Carlo tests even when α(B+1) is not an integer—
see Racine and MacKinnon (2004)— but it is only worth the trouble if simulation is
very expensive. Other references on Monte Carlo tests include Dwass (1957), in which
they were first proposed, Jöckel (1986) and Davidson and MacKinnon (2000), both of
which discuss power loss, Dufour and Khalaf (2001), which is a valuable survey, and
Dufour, Khalaf, Bernard, and Genest (2004), which discusses Monte Carlo tests for
heteroskedasticity.

2.2 Bootstrap and asymptotic tests

Most test statistics in econometrics are not pivotal. As a consequence, most bootstrap
tests are not exact. Nevertheless, there are theoretical reasons to believe that bootstrap
tests will often work better than asymptotic tests; see Beran (1988) and Davidson and
MacKinnon (1999). For this to be the case, the test statistic must have an asymptotic
distribution, but we do not need to know that distribution. Such a test statistic is said
to be asymptotically pivotal.

When a test statistic is not pivotal, bootstrap tests are not exact, because F ∗(τ) dif-
fers from F (τ). This problem goes away as n → ∞ whenever τ is asymptotically
pivotal, but it does not go away as B → ∞. When F (τ) is not very sensitive to the
values of unknown parameters or the moments of unknown distributions, bootstrap
tests should work well. Conversely, when F (τ) is very sensitive to the values of un-
known parameters or the moments of unknown distributions, and those parameters or
moments are estimated inefficiently and/or with large bias, bootstrap tests may work
very badly.

A bootstrap method may have quite different finite-sample properties when it is ap-
plied to alternative test statistics for the same hypothesis. As a rule, when we have
the opportunity to choose among several asymptotically equivalent test statistics to
bootstrap, such as likelihood ratio (LR), Lagrange multiplier (LM), and Wald statis-
tics for models estimated by maximum likelihood, we should use the one that is closest
to being pivotal. This may or may not be the one that performs most reliably as an
asymptotic test.

However, it is important to remember that bootstrap tests are invariant to monotonic
transformations of the test statistic. If τ is a test statistic, and g(τ) is a monotonic
function of it, then a bootstrap test based on g(τ) will yield exactly the same inferences
as a bootstrap test based on τ . The reason for this is easy to see: The position of τ̂ in
the sorted list of τ̂ and the τ∗j is exactly the same as the position of g(τ̂) in the sorted
list of g(τ̂) and the g(τ∗j ). As an example, F tests and LR tests in linear and nonlinear
regression models are monotonically related. Even though these tests may have quite
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different finite-sample properties, they must yield identical results when bootstrapped
in the same way.

One important case in which we generally do not know the asymptotic distribution of a
test statistic is when that statistic is the maximum of several dependent test statistics.
A well-known example is testing for structural change with an unknown break point
(Hansen, 2000). Suppose there are m test statistics, τ1 to τm. Then we simply make
the definition

τmax = max(τ1, . . . , τm) (7)

and treat τmax like any other test statistic for the purpose of bootstrapping. Note that
τmax will be asymptotically pivotal whenever the test statistics τ1 through τm have a
joint asymptotic distribution that is free of unknown parameters.

Whenever we perform two or more tests, it is dangerous to rely on ordinary P values,
because the probability of obtaining a low P value by chance increases with the number
of tests we perform. This can be a serious problem when testing model specification
and when estimating models with many parameters the significance of which we wish
to test. The overall size of such a procedure can be very much larger than the nominal
level of each individual test.

By using the bootstrap, it is remarkably easy to obtain an asymptotically valid P
value for the most extreme test statistic actually observed. By analogy with (7), we
can define

pmin = min
(
p(τ1), . . . , p(τm)

)
,

where p(τi) denotes the P value, in most cases computed analytically, for the ith test
statistic τi. Bootstrapping pmin is just like bootstrapping τmax defined in (7). Westfall
and Young (1993) provides an extensive discussion of multiple hypothesis testing based
on bootstrap methods.

There is a widespread misconception that bootstrap tests are less powerful than other
types of tests. Except for the modest loss of power that can arise from using a small
value of B, this is entirely false. Comparing the power of tests that are not exact is
fraught with difficulties; see Horowitz and Savin (2000) and Davidson and MacKinnon
(2006a). In general, however, it appears that the powers of asymptotic and bootstrap
tests which are based on the same test statistic are very similar when the tests have
been properly size-adjusted.

3. Bootstrapping Regression Models

What determines how reliably a bootstrap test performs is how well the bootstrap
DGP mimics the features of the true DGP that matter for the distribution of the
test statistic. Essentially the same thing can also be said for bootstrap confidence
intervals and bootstrap standard errors. In this section, I discuss four different types
of bootstrap DGP for regression models with uncorrelated error terms. Models with
dependent errors will be discussed in Section 6.
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Consider the linear regression model

yt = Xtβ + ut, E(ut |Xt) = 0, E(usut = 0) ∀ s 6= t, (8)

where there are n observations. Here Xt is a row vector of observations on k regressors,
and β is a k--vector. The regressors may include lagged dependent variables, but yt is
not explosive and does not have a unit root.

There are a great many ways to specify bootstrap DGPs for the model (8). Some
require very strong assumptions about the error terms ut, while others require much
weaker ones. In general, making stronger assumptions results in better performance
if those assumptions are satisfied, but it leads to asymptotically invalid inferences if
they are not. All the methods that will be discussed can also be applied, sometimes
with minor changes, to nonlinear regression models.

3.1 The residual bootstrap

If the error terms in (8) are independent and identically distributed with common
variance σ2, then we can generally make very accurate inferences by using the residual
bootstrap. We do not need to assume that the errors follow the normal distribution
or any other known distribution.

The first step in the residual bootstrap is to obtain OLS estimates β̂ and residuals
ût. Unless the quantity to be bootstrapped is invariant to the variance of the error
terms (this is true of test statistics for serial correlation, for example), it is advisable
to rescale the residuals so that they have the correct variance. The simplest type of
rescaled residual is

üt ≡
(

n

n− k

)1/2

ût. (9)

The first factor here is the inverse of the square root of the factor by which 1/n
times the sum of squared residuals underestimates σ2. A somewhat more complicated
method uses the diagonals of the “hat matrix” X(X>X)−1X> to rescale each residual
by a different factor. It may work a bit better than (9) when some observations have
high leverage; details are given in Davidson and MacKinnon (2006b).

The residual bootstrap DGP using rescaled residuals generates a typical observation
of the bootstrap sample by the equation

y∗t = Xtβ̂ + u∗t , u∗t ∼ EDF(üt). (10)

The bootstrap errors u∗t here are said to be “resampled” from the üt. That is, they
are drawn from the empirical distribution function, or EDF, of the üt. This function
assigns probability 1/n to each of the üt. Thus each of the bootstrap error terms can
take on n possible values, namely, the values of the üt, each with probability 1/n.

When the regressors include lagged dependent variables, the bootstrap DGP (10) is
normally implemented recursively, so that y∗t depends on its own lagged values. Either
pre-sample values of yt or drawings from the unconditional distribution of the y∗t may
be used to start the recursive process.
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3.2 The parametric bootstrap

It may seem remarkable that the residual bootstrap should work at all, let alone that it
should work well. The reason it often works well (as we will see in an example below),
is that least squares estimates and test statistics are generally not very sensitive to the
distribution of the error terms.

Of course, if this distribution is assumed to be known, we can replace (10) by the
parametric bootstrap DGP

y∗t = Xtβ̂ + u∗t , u∗t ∼ NID(0, s2). (11)

Here it is assumed that the errors are normally distributed, and so the bootstrap
error terms are independent normal random variates with variance s2, the usual OLS
estimate of the error variance. Similar methods can be used with any model estimated
by maximum likelihood, but their validity generally depends on the strong assumptions
inherent in maximum likelihood estimation.

For inferences about regression coefficients, it generally makes very little difference
whether we use the residual bootstrap or the parametric bootstrap with normal errors,
whether or not the errors are actually normally distributed. However, for inferences
about other aspects of a model, such as possible heteroskedasticity, it can make a large
difference.

3.3 Restricted versus unrestricted estimates

As described, the residual and parametric bootstraps use unrestricted estimates of β.
This is appropriate in the case of specification tests, such as tests for serial correlation
or nonnested hypothesis tests. For example, Davidson and MacKinnon (2002) apply
residual bootstrap methods to the J test of nonnested hypotheses and find that they
generally work very well. However, using unrestricted estimates is not appropriate if
we are testing a restriction on β.

Both the methods described so far can easily be modified to impose restrictions on
the vector β. In the first step, we simply need to estimate the model under the null
to obtain restricted estimates β̃. Then we use these estimates instead of β̂ in the
bootstrap DGP (11). We can resample from either restricted or unrestricted residuals.
In most cases, it seems to make little difference which we use.

There are two reasons to use restricted parameter estimates in the bootstrap DGP
when testing restrictions on β. The first reason is that, if we do not do so, the
bootstrap DGP will not satisfy the null hypothesis. If we naively compare τ̂ to the τ∗j
in such a case, the bootstrap test will be grossly lacking in power. It is possible to get
around this problem by changing the null hypothesis used to compute the τ∗j , as will
be discussed below in the context of the pairs bootstrap, but it is preferable to avoid
the need to do so.

The second reason for using restricted parameter estimates is that imposing the restric-
tions of the null hypothesis yields more efficient estimates of the nuisance parameters
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upon which the distribution of the test statistic may depend. This generally makes
bootstrap tests more reliable, because the parameters of the bootstrap DGP are es-
timated more precisely. For a detailed discussion of how the reliability of bootstrap
tests depends on the estimates of nuisance parameters, see Davidson and MacKinnon
(1999).

3.4 The wild bootstrap

The residual bootstrap is not valid if the error terms are not independently and iden-
tically distributed, but two other commonly used bootstrap methods are valid in this
case. The first of these is the “wild bootstrap,” which was proposed by Wu (1986) for
regression models with heteroskedastic errors.

For a model like (8) with independent but possibly heteroskedastic errors, the wild
bootstrap DGP is

y∗t = Xtβ̂ + f(ût)v∗t , (12)

where f(ût) is a transformation of the tth residual ût, and v∗t is a random variable with
mean 0 and variance 1. One possible choice for f(ût) is just ût, but a better choice is

f(ût) =
ût

(1− ht)1/2
, (13)

where ht is the tth diagonal of the “hat matrix” that was defined just after (9). When
the f(ût) are defined by (13), they would have constant variance if the error terms
were homoskedastic.

There are various ways to specify the distribution of the v∗t . The simplest, but not the
most popular, is

v∗t = 1 with probability 1
2 ; v∗t = −1 with probability 1

2 . (14)

Thus each bootstrap error term can take on only two possible values. Davidson and
Flachaire (2001) have shown that wild bootstrap tests based on (14) usually perform
better than wild bootstrap tests which use other distributions when the conditional
distribution of the error terms is approximately symmetric. When it is sufficiently
asymmetric, however, it may be better to use another two-point distribution, which is
the one that is most commonly used in practice:

v∗t =

{
−(
√

5− 1)/2 with probability (
√

5 + 1)/(2
√

5),

(
√

5 + 1)/2 with probability (
√

5− 1)/(2
√

5).
(15)

The wild bootstrap may seem like a rather strange procedure. When a distribution
like (14) or (15) is used, each error term can take on only two possible values, which
depend on the size of the residuals. Thus, in certain respects, the bootstrap DGP
cannot possibly resemble the real one. However, the expectation of the square of ût is
approximately the variance of ut. Thus the wild bootstrap error terms will, on average,
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have about the same variance as the ut. In many cases, this seems to be enough for
the wild bootstrap DGP to mimic the essential features of the true DGP.

As with the residual bootstrap, the null hypothesis can, and should, be imposed when-
ever we are using the wild bootstrap to test a hypothesis about β. Although it might
seem that the wild bootstrap works only with cross-section data or static models,
variants of it can also be used with dynamic models, provided the error terms are
uncorrelated; see Gonçalves and Kilian (2004).

3.5 The pairs bootstrap

Another method that can accommodate heteroskedasticity is the “pairs bootstrap,”
which was proposed by Freedman (1981) and was applied to regressions with instru-
mental variables by Freedman (1984) and Freedman and Peters (1984). The idea is to
resample the data instead of the residuals. Thus, in the case of the regression model
(8), we resample from the matrix [y X] with typical row [yt Xt]. Each observation
of the bootstrap sample is [y∗t X∗

t ], a randomly chosen row from [y X]. This method
is called the pairs (or pairwise) bootstrap because the dependent variable y∗t and the
independent variables X∗

t are always selected in pairs.

Unlike the residual and wild bootstraps, the pairs bootstrap does not condition on
X. Instead, each bootstrap sample has a different X∗ matrix. This method implic-
itly assumes that each observation [yt Xt] is an independent random drawing from a
multivariate distribution. It does not require that the error terms be homoskedastic,
and it even works for dynamic models if we treat lagged dependent variables like any
other element of Xt.

In the case of multivariate models, we can combine the pairs and residual bootstraps.
We organize the residuals into a matrix and then apply the pairs bootstrap to its
rows, adding the bootstrap error terms so generated to the appropriate fitted values
to yield the bootstrap data. This method preserves the cross-equation correlations of
the residuals without imposing any distributional assumptions on the bootstrap error
terms.

The pairs bootstrap is very easy to implement, and it can be applied to an enormous
range of models. However, it suffers from two major deficiencies. The first of these is
that the bootstrap DGP does not impose any restrictions on β. If we are testing such
restrictions, as opposed to estimating standard errors or forming confidence intervals,
we need to modify the bootstrap test statistic so that it is testing something which
is true in the bootstrap DGP. Suppose the actual test statistic takes the form of a t
statistic for the hypothesis that β = β0:

τ =
β̂ − β0

s(β̂)
. (16)
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Here β̂ is the unrestricted estimate of the parameter β that is being tested, and s(β̂) is
its standard error. Then, for bootstrap testing to be valid, we must use the bootstrap
test statistic

τ∗j =
β̂∗j − β̂

s(β̂∗j )
. (17)

Here β̂∗j is the estimate of β from the j th bootstrap sample, and s(β̂∗j ) is its standard
error, calculated using the bootstrap sample by whatever procedure was employed to
calculate s(β̂) using the actual sample. Since the estimate of β from the bootstrap
samples should, on average, be equal to β̂, at least asymptotically, the null hypothesis
tested by τ∗j is “true” for the pairs bootstrap DGP.

The other deficiency of the pairs bootstrap is that, compared to the residual bootstrap
(when it is valid) and to the wild bootstrap, the pairs bootstrap generally does not
yield very accurate results. This is primarily because it does not condition on the
actual X matrix. In the next subsection, we will examine a case in which the pairs
bootstrap does not work particularly well.

3.6 A comparison of several methods

To demonstrate how well, or how badly, various bootstrap procedures perform, it is
necessary to perform a simulation experiment. As an illustration, consider testing the
null hypothesis that β2 = 0.9 in the autoregressive model

yt = β1 + β2yt−1 + ut, ut ∼ NID(0, σ2). (18)

Standard tests are not exact here, because β̂2, the OLS estimate of β2, is biased. All
tests are based on the usual t statistic

τ =
β̂2 − 0.9

s(β̂2)
. (19)

It may seem odd that the null hypothesis is that β2 = 0.9 rather than β2 = 0 or β2 = 1.
The reason for not examining tests for β2 = 0 is that asymptotic methods work pretty
well for that case, and there is not much to be gained by using the bootstrap. The
reason for not examining tests for β2 = 1 is that the asymptotic theory changes
drastically when there is a unit root. The values of β1 and σ seem to have only a small
effect on the results; in the experiments, these values were β1 = 1 and σ = 1.

The experiments deal with five methods of inference. The first uses the Student’s t
distribution, which is valid only asymptotically in this case. The second is the residual
bootstrap using restricted estimates and restricted residuals rescaled using (9), called
the “RR bootstrap” for short. The third is the residual bootstrap using unrestricted
estimates and unrestricted rescaled residuals, called the “UR bootstrap” for short. The
fourth is the pairs bootstrap, and the fifth is the wild bootstrap using the two-point
distribution (14) and residuals rescaled by (13).
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Each experiment had 100,000 replications, with B = 399. This is a smaller value of
B than should generally be used in practice, but in a simulation experiment with a
large number of replications, the randomness due to B being small tends to average
out across the replications. Thus, when we are studying the properties of a bootstrap
test under the null hypothesis, there is generally no reason to use a large value of B.
Experiments were performed for each of the following sample sizes: 10, 14, 20, 28, 40,
56, 80, 113, 160, 226, 320, 452, 640, 905, and 1280. Each of these is larger than its
predecessor by approximately the square root of 2.

[Figure 1 about here]

We can see from Figure 1 that inference based on the t distribution is seriously un-
reliable. It improves as n increases, but it is by no means totally reliable even for
n = 1280. In contrast, inference based on the RR bootstrap is extraordinarily reliable.
Only for very small sample sizes does it lead to nonnegligible rates of overrejection.

In contrast, the other four bootstrap methods do not work particularly well. The pairs
bootstrap always performs worse than the t distribution. The wild bootstrap generally
outperforms the t distribution, but only modestly so. The UR bootstrap is the worst
method for n = 10, and it always performs badly for small sample sizes. However, it
improves more rapidly than any of the others as n increases, and it appears to perform
just as well as the RR bootstrap for large sample sizes.

This example may be unfair to the wild and pairs bootstraps, because the error
terms are independent and identically distributed. Suppose instead they follow the
GARCH(1, 1) process

σ2
t ≡ E(u2

t ) = α0 + α1u
2
t−1 + δ1σ

2
t−1, (20)

with α0 = 0.1, α1 = 0.1, and δ1 = 0.8. Instead of using the ordinary t statistic (19),
we now use the heteroskedasticity-robust pseudo-t statistic

β̂2 − 0.9

sh(β̂2)
, (21)

where sh(β̂2) is a heteroskedasticity-consistent standard error. There are several ways
to calculate such a standard error. The one used in the experiments is based on the
HCCME known as HC2, which will be described in the next section.

[Figure 2 about here]

Figure 2 shows the results of this second set of experiments. All the bootstrap methods
now reject less frequently than the t distribution for all sample sizes. However, all but
the RR bootstrap perform quite poorly when n is small. The wild bootstrap seems
to perform best when n is very large, which is in accord with theory. However, the
pairs bootstrap actually underrejects in this case, which is somewhat worrying. The
surprisingly good performance of the RR bootstrap, even though it does not allow for
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heteroskedasticity, is presumably because the bias in β̂2 is much more important than
the heteroskedasticity of the error terms.

[Figure 3 about here]

Figure 3 shows what happens when the ordinary t statistic (19) is used and the error
terms follow the GARCH(1, 1) process (20). This test statistic is not asymptotically
valid in the presence of heteroskedasticity. Not surprisingly, the t distribution and
the RR and UR bootstraps work terribly, and their performance deteriorates as n
increases. However, the wild bootstrap performs about as well as it did when the
test statistic was (21), and the pairs bootstrap also performs reasonably well for large
sample sizes. In this case, the ability of the wild and pairs bootstraps to mimic the
heteroskedasticity in the data is evidently critical.

4. Bootstrap Standard Errors

The bootstrap was originally proposed as a method for computing standard errors;
see Efron (1979, 1982). It can be valuable for this purpose when other methods are
computationally difficult, are unreliable, or are not available at all.

If θ̂ is a parameter estimate, θ̂∗j is the corresponding estimate for the j th bootstrap
replication, and θ̄∗ is the mean of the θ̂∗j , then the bootstrap standard error is

s∗(θ̂) =
(

1
B − 1

B∑

j=1

(θ̂∗j − θ̄∗)2
)1/2

. (22)

This is simply the sample standard deviation of the θ̂∗j . We can use s∗(θ̂) in the
same way as we would use any other asymptotically valid standard error to construct
asymptotic confidence intervals or perform asymptotic tests.

Although there are many situations in which bootstrap standard errors are useful (we
will encounter one in the next section), there are others in which they provide no
advantage. In the context of ordinary least squares, for example, it makes absolutely
no sense to use bootstrap standard errors.

There are two widely-used estimators for the covariance matrix of the OLS parameter
vector β̂ in the model (8) when the error terms are independent. The best-known,
which is valid when the error terms are homoskedastic, is

V̂ar(β̂) = s2(X>X)−1. (23)

Under heteroskedasticity of unknown form, this estimator is invalid. Instead, we would
use a heteroskedasticity-consistent covariance matrix estimator, or HCCME, of the
form

V̂arh(β̂) = (X>X)−1X>Ω̂X(X>X)−1, (24)

where Ω̂ is an n×n diagonal matrix with diagonal elements equal to the squared resid-
uals or, preferably, some transformation of them that is designed to offset the tendency
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of least squares residuals to be too small. The HC2 variant of (24) divides each of the
squared residuals by 1 − ht, where ht is a diagonal element of the “hat matrix” that
was defined just after (9); see Davidson and MacKinnon (2004, Chapter 5).

Whatever the bootstrap DGP, the bootstrap covariance matrix is

V̂ar∗(β̂) =
1

B − 1

B∑

j=1

(β̂∗j − β̄∗)(β̂∗j − β̄∗)>, (25)

where the notation should be obvious; compare (22). For a residual bootstrap DGP
like (10), it can be shown that, as n and B become large, (25) tends to

σ2
∗(X

>X)−1, (26)

where σ2
∗ is the average variance of the bootstrap error terms. This matrix tends to

the same limit as (23). Thus, in this case, the bootstrap covariance matrix (25) is
valid if the errors are independent and homoskedastic, but not otherwise.

In contrast, for the wild bootstrap, the bootstrap covariance matrix (25) is approxi-
mately equal to the matrix

1
B

B∑

j=1

(Xj
>Xj)−1Xj

>u∗ju
∗
j
>Xj(Xj

>Xj)−1, (27)

where u∗j is the vector of bootstrap error terms for the j th bootstrap sample. This
looks a lot like the HCCME (24). The matrix in the middle here is approximately
equal to X>Ω̂X. Thus, for B and n reasonably large, we would expect (27) to be
very similar to the HCCME (24). A similar argument can be applied to the pairs
bootstrap; see Flachaire (2002).

We have seen that, for a linear regression model, there is nothing to be gained by using
a bootstrap covariance matrix instead of a conventional one like (23) or (24). However,
when convenient analytical results like these are not available, bootstrap covariance
matrices and standard errors can be very useful.

5. Bootstrap Confidence Intervals

There is an extensive literature, mainly by statisticians, on the numerous ways to
construct bootstrap confidence intervals. Davison and Hinkley (1997) provides a very
good introduction to this literature, which is much too large to discuss in any detail.

5.1 Simple bootstrap confidence intervals

The simplest approach is to calculate the bootstrap standard error (22) and use it to
construct a confidence interval based on the normal distribution:

[
θ̂ − s∗(θ̂)z1−α/2, θ̂ + s∗(θ̂)z1−α/2

]
. (28)
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Here z1−α/2 denotes the 1 − α/2 quantile of the standard normal distribution. If
α = .05, this is equal to 1.96. There is no theoretical reason to believe that the
“simple bootstrap” interval (28) will work any better, or any worse, than a similar
interval based purely on asymptotic theory. However, it can be used when there is no
way to calculate a standard error analytically or when asymptotic standard errors are
unreliable. Another advantage of (28) is that the number of bootstrap samples, B,
does not have to be very large.

The simple bootstrap interval can be modified so that it is centered on a bias-corrected
estimate of θ. We simply replace θ̂ in (28) by

θ̌ = θ̂ − (θ̄∗ − θ̂) = 2θ̂ − θ̄∗; (29)

recall that θ̄∗ is the sample mean of the θ∗j . In (29), we use the difference between θ̄∗

and θ̂ to estimate the bias, and then we subtract the estimated bias. The bias-corrected
estimator θ̌ almost always has a larger standard error than θ̂, but bias correction can
be helpful if the bias is severe and does not depend strongly on θ; see MacKinnon and
Smith (1998).

5.2 Percentile t confidence intervals

A method that has better properties than the simple bootstrap interval, at least in
theory, is the “percentile t” method, also called “bootstrap t” and “Studentized boot-
strap,” which has been advocated by Hall (1992). A percentile t confidence interval
for θ at level 1− α is [

θ̂ − s(θ̂)t∗1−α/2, θ̂ − ŝ(θ̂)t∗α/2

]
, (30)

where s(θ̂) is the standard error of θ̂, and t∗δ is the δ quantile of the bootstrap t statistics

t∗j =
θ̂∗j − θ̂

s(θ̂∗j )
. (31)

For example, if α = .05 and B = 999, t∗1−α/2 will be number 975, and t∗α/2 will be
number 25, in the sorted list of the t∗j . The use of B = 999 in this example is not an
accident. A fairly large value of B is needed if the quantiles of the distribution of the
t∗j are to be estimated accurately, and, as with bootstrap tests, it is desirable for B to
be chosen in such a way that α(B + 1) is an integer.

The interval (30) looks very much like an ordinary confidence interval based on invert-
ing a t statistic, except that quantiles of the bootstrap distribution of the t∗j are used
instead of quantiles of the Student’s t distribution. Because of this, the percentile
t method implicitly performs a sort of bias correction. When the median of the t∗j
is positive (negative), the percentile t interval tends to be shifted to the left (right)
relative to an asymptotic interval based on the normal or Student’s t distributions.

In theory, percentile t confidence intervals achieve “higher-order accuracy” relative to
asymptotic intervals or the simple bootstrap interval (31). This means that the rate
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at which the error in coverage probability declines as n increases is faster than it is
for asymptotic methods. However, as we will see in the next subsection, percentile t
intervals do not always perform well in practice; see also MacKinnon (2002).

The percentile t method evidently cannot be used if s(θ̂) cannot be calculated. It
should not be used if s(θ̂) is unreliable or strongly dependent on θ̂, since its excellent
theoretical properties do not seem to apply in practice in such cases. This method
seems to be particularly useful when the t statistic for θ̂ to equal its true value is not
symmetrically distributed around zero, but s2(θ̂) is a reliable estimator of Var(θ̂).

5.3 Comparing bootstrap confidence intervals

Here we perform a simulation to illustrate the fact that bootstrap confidence intervals
do not always work particularly well. Suppose that yt, t = 1, . . . , n, are drawings from
a distribution F (y). We want to form confidence intervals for some of the quantiles
of F (y). If qα is the true α quantile, and q̂α is the corresponding estimate, then
asymptotic theory tells us that

Var(q̂α) a=
α(1− α)
nf 2(qα)

. (32)

Here f(qα) is f(y), the density of y, evaluated at qα. In practice, we replace f(qα) by
a kernel density estimate f̂(q̂α) so as to obtain the standard error estimate

s(q̂α) =
(

α(1− α)

nf̂ 2(q̂α)

)1/2

. (33)

Thus the 0.95 asymptotic confidence interval is equal to

[
q̂α − 1.96s(q̂α), q̂α + 1.96s(q̂α)

]
. (34)

The simplest bootstrap procedure is just to resample the data, calculate the desired
quantile(s) of each bootstrap sample, and then use equation (22) to estimate the
bootstrap standard error. This yields the 0.95 simple bootstrap interval

[
q̂α − 1.96s∗(q̂α), q̂α + 1.96s∗(q̂α)

]
. (35)

We can also use the percentile t method. This is much more expensive, because it
requires kernel estimation for the actual sample and for every bootstrap sample.

In the experiments, F (y) was χ2(3), which is severely skewed to the right, B was 999,
and α = 0.1, 0.2, . . . , 0.9. The sample size n varied from 50 to 1600 by factors of

√
2.

A very standard method of kernel estimation was employed. It used a Gaussian kernel
with bandwidth equal to 1.059n−1/5 times the sample standard deviation of the yt.
There were 100,000 replications for each sample size.

[Figure 4 about here]
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Figure 4 shows the coverage frequency of three different confidence intervals for the 0.1
quantile, the 0.5 quantile (the median), and the 0.9 quantile. The coverage frequency
is the proportion of the time that the interval includes the true value of the quantile.
Ideally, it should be 0.95 here. The simulation results are not in accord with stan-
dard bootstrap theory. The asymptotic interval sometimes overcovers and sometimes
undercovers, while both bootstrap intervals always undercover. The simple bootstrap
interval, which is conceptually the easiest to calculate, clearly performs best for both
the 0.1 and 0.9 quantiles. The asymptotic interval performs best for the median. In
contrast, the percentile t interval, which theory seems to recommend, performs least
well in almost every case. This is probably because the estimated standard errors,
given in equation (33), are not particularly reliable and are not independent of the
quantile estimates.

6. Bootstrap DGPs for Dependent Data

All of the bootstrap DGPs that have been discussed so far treat the error terms (or the
data, in the case of the pairs bootstrap) as independent. When that is not the case,
these methods are not appropriate. In particular, resampling (whether of residuals or
data) breaks up whatever dependence there may be and is therefore unsuitable for use
when there is dependence.

Numerous bootstrap DGPs for dependent data have been proposed. The two most
popular approaches are the “sieve bootstrap” and the “block bootstrap.” The former
attempts to model the dependence using a parametric model. The latter resamples
blocks of consecutive observations instead of individual observations. Each of these
methods has a great many variants, and the discussion here is necessarily quite su-
perficial. Recent surveys of bootstrap methods for time-series data include Bühlmann
(2002), Horowitz (2003), Politis (2003), and Härdle, Horowitz, and Kreiss (2003).

6.1 The sieve bootstrap

Suppose that the error terms ut in a regression model, which for simplicity we may
assume to be the linear regression model (8), follow an unknown, stationary process
with homoskedastic innovations. The sieve bootstrap attempts to approximate this
process, generally by using an AR(p) process with p chosen either by some sort of
model selection criterion or by sequential testing.

The first step is to estimate the model (8), preferably imposing the null hypothesis
if one is to be tested, so as to obtain residuals ût. The next step is to estimate the
AR(p) model

ût =
p∑

i=1

ρi ût−i + εt (36)

for several values of p and choose the best one. This may be done in a number of
ways. Since OLS estimation does not ensure that the estimated model is stationary, it
may be advisable to use another estimation method, such as full maximum likelihood
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or the Yule-Walker equations, so as to ensure stationarity. See Brockwell and Davis
(1998) or Shumway and Stoffer (2000) for discussions of these methods.

After p has been chosen and the preferred version of (36) estimated, the bootstrap
error terms are generated recursively by the equation

u∗t =
p∑

i=1

ρ̂iu
∗
t−i + ε∗t , t = −m, . . . , 0, 1, . . . , n, (37)

where the ρ̂i are the estimated parameters, and the ε∗t are resampled from the (possibly
rescaled) residuals. Here m is a somewhat arbitrary number, such as 100, chosen so
that the process can be allowed to run for some time before the sample period starts.
We set the initial values of u∗t−i to zero and discard the u∗t for t < 1.

The final step is to generate the bootstrap data by the equation

y∗t = Xtβ̂ + u∗t , (38)

where β̂ may be estimated in various ways. If restrictions are being tested, they should
always be imposed, but this is not done when constructing confidence intervals. OLS
estimates are typically used, but more efficient estimates can often be obtained by using
GLS based on the covariance matrix implied by (37). Obviously, whatever estimates
are used must be consistent under the null hypothesis.

The sieve bootstrap is somewhat restrictive, because it assumes that the innovations,
the εt, are independent and identically distributed. This rules out GARCH models and
other forms of conditional heteroskedasticity. Moreover, as we will see below, an AR(p)
model with a reasonable value of p does not provide a good approximation to every
stationary, stochastic process. Nevertheless, the sieve bootstrap is quite popular. It
has recently been applied to Dickey-Fuller unit root testing by Park (2003) and Chang
and Park (2003), and it seems to work quite well in many cases.

6.2 Block bootstrap methods

Block bootstrap methods, originally proposed by Künsch (1989), divide the quantities
that are being resampled, which might be either rescaled residuals or [y,X] pairs, into
blocks of b consecutive observations. The blocks, which may be either overlapping or
nonoverlapping and may be either fixed or variable in length, are then resampled. It
appears that the best approach is to use overlapping blocks of fixed length; see Lahiri
(1999). This is called the “moving-block bootstrap.”

For the moving-block bootstrap, there are n− b + 1 blocks. The first contains obser-
vations 1 through b, the second contains observations 2 through b + 1, and the last
contains observations n− b + 1 through n. Each bootstrap sample is then constructed
by resampling from these overlapping blocks. Unless n/b is an integer, one or more of
the blocks will have to be truncated to form a sample of length n.

The choice of b is critical. In theory, it must be allowed to increase as n increases,
and the rate of increase is often proportional to n1/3. Of course, since actual sample
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sizes are generally fixed, it is not clear what this means in practice. If the blocks are
too short, the bootstrap samples cannot possibly mimic the original sample, because
the dependence is broken whenever we start a new block. However, if the blocks are
too long, the bootstrap samples are not random enough. In many cases, it is only
when the sample size is quite large that is it possible to choose b so that the blocks
are neither too short nor too long.

The “block-of-blocks” bootstrap (Politis and Romano, 1992) is the analog of the pairs
bootstrap for dynamic models. Consider the dynamic regression model

yt = Xtβ + γyt−1 + ut, ut ∼ IID(0, σ2). (39)

If we define
Zt ≡ [yt, yt−1, Xt] , (40)

we can construct n− b + 1 overlapping blocks as

Z1 . . . Zb, Z2 . . . Zb+1, . . . . . . , Zn−b+1 . . . Zn. (41)

These are then resampled in the usual way.

The advantages of the block-of-blocks bootstrap are that it can be used with almost
any sort of dynamic model and that it can handle heteroskedasticity as well as serial
correlation. However, its finite-sample performance is often not very good. Moreover,
since it does not impose the null hypothesis, any test statistic must be adjusted so that
it is testing a hypothesis that is true for the bootstrap DGP. Ideally, this adjustment
should take account of the fact that, because of the overlapping blocks, not all obser-
vations appear with equal frequency in the bootstrap samples. See Horowitz, Lobato,
Nankervis, and Savin (2006).

The theoretical properties of block bootstrap methods are not particularly good. When
used for testing and for construction of percentile t confidence intervals, they frequently
offer higher-order accuracy than asymptotic methods. However, the rate of improve-
ment is generally quite small; see Hall, Horowitz, and Jing (1995) and Andrews (2002,
2004). Two other recent theoretical papers which focus on different aspects of block
bootstrap methods are Gonçalves and White (2004, 2005).

6.3 Example: a unit root test

The asymptotic distributions of many unit root tests do not depend on the process
that generates the error terms, but the finite-sample distributions do. Consider an
augmented Dickey-Fuller test for a time series with tth observation yt to have a unit
root. One popular version of such a test is the t statistic for β1 = 0 in the regression

∆yt = β0 + β1yt−1 +
p∑

j=1

δj∆yt−j + et. (42)
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The p lags of ∆yt−j are added to account for serial correlation in the error terms. The
value of p can be chosen in a number of different ways, which substantially affect the
finite-sample properties of the resulting tests. These include model selection criteria,
such as AIC and BIC, and various sequential testing schemes; see, among others, Ng
and Perron (2001).

In order to bootstrap this test, we first run the regression under the null that β1 = 0
and then generate bootstrap samples that satisfy the null. There are several ways in
which to do this, which lead to bootstrap DGPs that can have quite different finite-
sample properties.

For the sieve bootstrap, we first regress ∆yt on a constant and a number of lags of
∆yt, obtaining coefficients ρ̂i and residuals ε̂t. We then generate data according to
the equation

y∗t = y∗t−1 +
q∑

i=1

ρ̂i∆y∗t−i + ε∗t , t = −m, . . . , 0, 1, . . . , n,

setting the initial values of y∗t−i to zero. The ε∗t are resampled from the rescaled ε̂t.
Like the value of p in equation (42), the number of lags, q, can be chosen in various
ways. In practice, q may or may not equal p. The details of how q is chosen may
substantially affect the performance of the bootstrap DGP in finite samples.

For the moving-block bootstrap, there are no parameters to estimate, because we are
not attempting to estimate the process for the error terms and, under the null hypothe-
sis, β0 = 0 and β1 = 1. The residuals under the null are just ût = ∆yt−

∑n
t=1(1/n)∆yt,

where the second term is needed to ensure that they have mean zero. We resample the
bootstrap errors u∗t from overlapping blocks of the ût and then generate the bootstrap
data according to the random walk y∗t = y∗t−1 + u∗t . The easiest way to deal with the
initial observations is to start the process at zero and generate n + m observations,
discarding the first m of them.

If we knew that the error terms followed a particular process, we could estimate it and
use a semiparametric bootstrap. For example, if they followed an MA(1) process, we
could estimate the model

∆yt = β0 + εt + αεt−1, εt ∼ IID(0, σ2), (43)

and generate the bootstrap data according to the equation

y∗t = y∗t−1 + ε∗t + α̂ε∗t−1,

where the ε∗t are resampled from rescaled and recentered ε̂t.

For purposes of illustration, I performed a number of experiments in which there were
50 observations and the errors actually followed the MA(1) process (43). There were
100,000 replications for each of 39 values of α from −0.95 to 0.95 at intervals of 0.05.
The number of lags p in the test regression (42) was chosen by the AIC and forced
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to be between 4 and 12. This selection procedure was repeated for each bootstrap
sample. I used three bootstrap DGPs. The first was a moving-block bootstrap with
block length 12. The second was a sieve bootstrap with q restricted to lie between
4 and 12 and chosen by the AIC. The third was a semiparametric bootstrap based
on (43). Readers may well feel that it is cheating to use the last of these procedures,
since practitioners will rarely be confident that the data actually come from an MA(1)
process.

[Figure 5 about here]

The results of these experiments are shown in Figure 5. It can be seen that the
“asymptotic” test always overrejects, although the overrejection is only severe for
large, negative values of α. The results termed “asymptotic” actually use a finite-
sample critical value, −2.9212, that would be valid if there were no serial correlation
and no lags of ∆yt in the test regression. It was taken from MacKinnon (1996). Using
the genuine asymptotic critical value, −2.8614, would have resulted in slightly higher
rejection frequencies.

All three bootstrap methods work remarkably well for α > 0, but all three work
poorly for α < −0.9. Not surprisingly, the semiparametric procedure generally works
best, but even it overrejects quite noticeably for large, negative values of α. This
presumably happens because the estimate of α is biased upwards in this case, so
that the bootstrap DGP fails to mimic the true DGP sufficiently well. The sieve
and moving-block bootstraps overreject much more severely. In the case of the sieve
bootstrap, this reflects the fact that even a fairly high-order AR process does not do
a very good job of mimicking an MA(1) process with a large, negative coefficient.
Interestingly, even though the moving-block bootstrap overrejects severely for large,
negative values of α, it underrejects quite noticeably for smaller, negative values.

This example illustrates the facts that bootstrap methods may or may not yield ac-
curate inferences, and that different bootstrap methods may perform quite differently.
It suggests that bootstrap methods should be used with considerable caution when
performing unit root and related tests.

7. Conclusions

It is very misleading to talk about “the bootstrap,” because there are actually many
different bootstrap methods. Deciding what sort of bootstrap DGP to use in any given
situation is the first, and often the hardest, thing that an applied econometrician must
do. Conditional on the choice of bootstrap DGP, there are then a number of other
substantive decisions to be made.

In the case of hypothesis testing, it is almost always desirable to impose the null
hypothesis on the bootstrap DGP, but it may not be feasible to do so. When it is not,
we have to change the null hypothesis for the bootstrap samples so that whatever is
being tested is “true” for the bootstrap data. There is often more than one statistic
that could be bootstrapped, and we have to choose among them. For tests based on

–20–



signed statistics, such as t statistics, we may or may not wish to assume symmetry
when calculating P values.

For confidence intervals, the number of options is bewildering. We can use asymptotic
intervals constructed using bootstrap standard errors, which may or may not incor-
porate bias correction. We can use percentile t intervals based on various types of
standard errors, which may or may not have symmetry imposed on them. We can also
use a number of methods that were not discussed in this paper, including primitive
ones like the “percentile method” and more sophisticated ones like the BCa method;
see Efron and Tibshirani (1993) and Davison and Hinkley (1997).

Whatever bootstrap methods we choose to use, it is always important to make it clear
precisely what was done whenever we report the results of empirical work. Simply
saying that something is a “bootstrap standard error,” a “bootstrap P value,” or a
“bootstrap confidence interval” provides the reader with grossly insufficient informa-
tion. We need to make it clear exactly how the bootstrap data were generated and
what procedures were then used to calculate the quantities of interest.
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Figure 1. Rejection frequencies at .05 level: Ordinary t statistic and IID errors
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Figure 2. Rejection frequencies at .05 level: Hetero-robust t statistic and GARCH errors
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Figure 3. Rejection frequencies at .05 level: Ordinary t statistic and GARCH errors
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