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Abstract

The present essay analyses the performance of a central bank to achieve the learnability of pa-

rameter values that govern the Phillips Curve (PC) equation while trying to stabilize the inflation

rate. The present essay shows the ability of policymakers to achieve both objectives simultane-

ously. Using a Recursive Least Squares (RLS) algorithm to model the learning process performed

by the central bank, it will iteratively estimate the parameters, which account for the level of per-

sistence in inflation and the impact of increases in the policy interest rate on the inflation rate in

the economy. Various simulation scenarios will confirm that the central’s bank estimates, with the

addition of sufficient exogenous variation, can progressively converge to their actual mean values.

Learnability will also be shown to be robust to the inclusion of time-variability in the structure of

parameters that compose the PC equation.
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1 Introduction

Central banks commonly face a dual problem in an inflation-targeting regime. First, they seek

to control, at a stable level, the growth of the price level in the economy. Second, policymakers

must also estimate the values of the time-varying parameters that define the decision equations in

order to achieve their policy objectives. With additional information, central bankers can gradu-

ally improve their assessment of the impact of macroeconomic variables on each other. Ultimately,

policymakers are interested in learning the actual value of the parameters to respond proportionally

to changes in the inflation rate relative to its target by varying their policy instrument accordingly.

Moreover, central banks must ensure that the models and equations guiding monetary policy

decisions are well specified to mitigate potential model uncertainty. In this research, I will assume

that the equations are specified correctly. However, policymakers have to operate in an uncertain

environment in which the exact value of the parameters that govern these relationships remain un-

known. Thus, in addition to their mission of stabilizing selected macroeconomic variables such

as the inflation rate, central banks must simultaneously estimate the parameters that weight the

impacts of variations in the policy interest rate and the output gap on the observed inflation rate.

By identifying these parameters more precisely, the central bank will be able to control the level

of inflation adequately. However, these parameters are not directly observed by the central banks,

and their estimation may fluctuate over time according to their levels of variability.

The present research will focus on the uncertainty that may lie in the values of the various

parameters incorporated in structural macroeconomic equations. Thus, this essay will address

whether, in the presence of parameter variability, central banks can learn the value of the param-

eters that make up the realizations of the inflation rate and simultaneously control inflation, so it

remains reasonably close to its target. This essay explores the use of a Phillips Curve (PC) equa-

tion by the central bank to define the relationship guiding the readings of the inflation rate with the

policy interest rate as well as with past inflation observations. In addition, the model structure will
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include multiple interest-rate decision rules to numerically assess if the central bank can regulate

variations in inflation using a quadratic single-period loss function while gradually learning the

value of the parameters under various scenarios. Numerical methods will be used to model the

learning process conducted by the central bank. Several exercises will be carried out using Recur-

sive Least Squares (RLS) estimation methods to assess the learning performance of the monetary

authority over time.

Following the numerical estimation of the model structure, the central bank will be able to learn

the actual value of the parameters while controlling the variance of inflation reasonably well with

a feedback interest-rate equation. It will require the interest-rate rule to have a sizeable component

that remains exogenous from the monetary policy decision of the central bank. The central bank

will then be able to recursively estimate the value of parameters that constitute the PC equation

with sufficient exogenous variation. The pace of convergence will vary according to the speci-

fication of the loss functions and its resulting interest-rate decision rules. In addition, the central

bank will achieve learnability when the values of some parameters incorporate time-variability and

remain uncertain to policymakers. In the trade-off between the learning process and controlling

the target variable, the monetary authority will be unable to mitigate deviations of the inflation rate

from its target entirely. Since this learning process has to be repeated iteratively, the central bank

will never entirely stabilize inflation on a given iteration of the recursive algorithm.

Moreover, the essay will demonstrate that the central bank adopts a more cautious optimal

stance on its policy rate when facing parameter variability on the coefficient that governs the impact

of the interest rate on the level of inflation. In doing so, the central bank will prevent potentially

significant costs associated with acute deviations in the inflation rate incurred due to the specifi-

cation of its loss function. It will also be shown that the results are robust to multiple extensions

of the model structure, such as enhanced persistence in the definition of parameters, the introduc-

tion of an intercept in the PC equation, and the introduction of variability on multiple parameters
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that define contemporaneous realizations of inflation. Furthermore, the model structure will be en-

dowed with an IS equation to account for the impact of variations of the output gap on the inflation

rate. A robustness exercise will also be conducted to confirm that the choice of parameters does

not interfere in the findings that the central bank can achieve learnability and price stability.

Finally, I will test whether the selection of algorithms used by the central bank to estimate

the parameter values has a significant impact on its control over the level of inflation and on its

learning ability. The simulations will be mostly conducted with an expanding window algorithm.

However, in the face of persistence in the law of motion of some parameters, one could be inter-

ested in knowing if a rolling window algorithm would follow more closely the actual observations

of the parameters. A hypothesis is that the central bank could learn in a better fashion the values

of persistent coefficients with a shorten historical sample. Furthermore, a theoretical exercise will

show the similitudes between the use of an RLS estimation algorithm and a Kalman filter algorithm

to model the learning process of the central bank.

The rest of the essay is structured as follows. Section 2 reviews the literature on the optimal

response adopted by central banks in the presence of parameter variability and how policymakers

can progressively learn the parameter values to structure their interest rate decisions. Section 3

describes a benchmark example of the model structure as well as the sequence of events of the

iterative learning process conducted by the central bank using numerical methods. Section 4 il-

lustrates a model structure departing from the benchmark example, which introduces a feedback

interest-rate equation aiming at better stabilizing the inflation rate. Section 5 discusses the impact

of introducing parameter variability on the optimal behavior by the central bank. Section 6 details

whether findings of learnability hold when varying the values of the parameters in the model. Sec-

tion 7 covers various extensions to the model structure presented in section 5, which incorporates

parameter variability. Section 8 concludes and offers suggestions for further research.
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2 Related Research

Several studies have investigated the effects of the introduction of uncertainty on the response

of central banks. The novel research of Brainard (1967) showed that multiplicative uncertainty in

the parameter values would lead policymakers to adopt a more cautious approach in their interest

rate responses to economic disturbances compared to the certainty equivalent alternative. Their

optimal choice of policy instrument, computed with a static quadratic loss function, is defined as

inversely related to the variance of the impact parameter that guides the response of inflation to the

policy interest rate. The presence of multiplicative uncertainty means that changes in interest rates

have the potential to increase uncertainty regarding the path of the economy further. Subsequently,

policymakers would adopt a more cautious approach when facing an uncertain environment to

stabilize inflation optimally. They would become reluctant to change their interest-rate stances

sharply to minimize deviations in inflation when multiplicative uncertainty is introduced on the

elasticity of inflation to interest rate variations. This is commonly referred to as the “Brainard

Uncertainty Principle” in the literature.

Wieland (2003) confirmed the existence of the Brainard Principle as he also found that the op-

timal response from the central bank to shocks to inflation would require a more cautious policy

stance than in the certainty-equivalent scenario. Following an initial shock, the inflation rate would

then gradually return towards its target. Wieland (2003) explains that the gradualist approach

would remain optimal for various instances of parameter uncertainty induced in a myopic model

structure. For example, introducing parameter uncertainty on the intercept of the Phillips Curve,

on the transition dynamics of inflation and on the interest-rate impact coefficient would all lead to

the adoption of a cautious response to optimally stabilize inflation. However, when incorporating a

dynamic structure to the model, the central bank then faces a trade-off. It needs to mitigate current

deviations of the inflation rate from its target while simultaneously experimenting to obtain more

precise estimates of the parameters in the PC equation to improve future performance. In this in-

stance, the central bank will be inclined to act more decisively compared to its myopic counterpart.

4



Craine (1979) introduced a dynamic model with random coefficients that incorporates multiple

sources of uncertainty. In contrast to Brainard (1967), which used a static single-equation model

with a unique random policy coefficient, Craine (1979) found that increased uncertainty would

not necessarily lead to a more cautious policy stance adopted by the central bank. He found that

the optimal policy responses would depend on the relative uncertainty between the transition and

the impact parameters. Increased uncertainty on the impact of the policy rate on the inflation rate

would make policymakers more risk-averse, leading to a less aggressive policy behavior. On the

other hand, uncertainty about the dynamics of the model, introduced as a positive variance of the

transition parameter, would call for a proactive response to mitigate the amplification mechanism of

the exogenous shocks over time. Moreover, Söderström (2002) found that, when the central bank

attaches some weight to stabilizing output in addition to the level of inflation, the optimal policy

becomes more aggressive when uncertain about the value of the coefficient governing the persis-

tence of inflation. However, Söderström (2002) also confirmed the findings of Brainard (1967) that,

in the presence of parameter uncertainty on the impact coefficients, the gradual approach would be

preferred to mitigate inflation deviations from its target in a strict inflation-targeting regime.

Ferrero, Pietrunti, and Tiseno (2019) instead found that when the planner is uncertain about

the parameter values incorporated in a New-Keynesian Phillips Curve design, the optimal mon-

etary policy response, whether to adopt a more gradual or aggressive approach, will depend on

the persistence of the shocks that hit the economy. They investigated the impact of introducing

uncertainty in the slope of the Phillips curve and in the natural interest rate paired with asymmetric

information as the central bank can only observe the shocks with a one-period lag. Ferrero et al.

(2019) argue that the optimal behavior under certainty-equivalence would remain optimal when

introducing uncertainty regarding the persistence of the technology shock. Policymakers should

then react to exogenous shocks as in the full information case. However, when dealing with mul-

tiplicative uncertainty on the persistence in the slope of the Phillips curve, the optimal approach
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would depend on the level of persistence of the cost-push shock. If discovered that the exogenous

cost-push shock is highly persistent, policymakers would choose to implement a more cautious

approach. When persistence is elevated, there is a higher probability of facing acute welfare losses

with the implementation of a misguided aggressive policy response. It would cause a more pro-

nounced divergence of the state variables from their respective targeted equilibrium values.

In the same vein, Kimura and Kurozumi (2007) have illustrated that the presence of uncertainty

can cause the central bank to opt for a more aggressive monetary policy. Using Bayesian methods

and a hybrid New-Keynesian Phillips curve, they determined the optimal choice of policy stance

required to minimize the central bank’s loss function while accounting for the given prior distri-

bution of the uncertain coefficients. With the implementation of a micro-founded forward-looking

PC equation, Kimura and Kurozumi (2007) confirmed the findings of Söderström (2002) that the

appropriate response to uncertainty about the inflation dynamics would lead the central bank to act

more aggressively to stabilize inflation following an exogenous shock.

They mention that the difference in results on whether the Brainard Principle held in the pres-

ence of uncertainty on inflation dynamics with Wieland (2003) might reside in the fact that they

employed a flexible inflation target regime compared to a strict inflation-targeting system. When

the central bank attaches a positive weight to output stabilization in its objective function, Kimura

and Kurozumi (2007) argue that monetary policy will only limit a fraction of the gap between

expected inflation and its target, so that the inflation rate will converge at a slower pace to its tar-

get. Thus, the central bank that considers deviations in output will be more affected by uncertainty

on the dynamics of inflation and will want to act more decisively in equilibrium. Kimura and

Kurozumi (2007) also departs from some findings of Söderström (2002) as the policy stances of

the central bank modeled in Kimura and Kurozumi (2007) will not return to a neutral level after

responding aggressively initially. Furthermore, contrary to findings made in Söderström (2002),

Kimura and Kurozumi (2007) shows that the Brainard Principle would not hold when the structure
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of aggregate demand remains uncertain. The difference in results mainly resides in the inclusion

of a feedback effect in the loss-function uncertainty as well as in the positive correlation between

the policy multiplier and the transmission mechanisms of the shocks, according to the authors.

In the learning literature, Wieland (2000) has shown how economic agents would react in a

model structure where they faced a trade-off between current control of the targeted variables and

experimentation. Experimentation would yield lower contemporaneous payoffs, but it allows one

to collect information in an effort to maximize future payoffs. For example, the central bank could

deliberately preserve deviations of the inflation rate from its target to learn the parameter values

more efficiently. Wieland (2000) found that the experimentation process improved the expected

future payoffs of the policymakers. Although acknowledging its existence in the literature, the

present research will not account for the experimentation process in the model structure. In this

research, the central bank will not able to stabilize inflation entirely. However, it does not con-

sciously allow the inflation rate to deviate from its target in order to experiment and learn the

parameter values.

In a similar vein, Beck and Wieland (2002) have found, using numerical approximations, that

the optimal behavior of the central bank would incorporate a significant level of experimentation to

help policymakers learn the parameter values in an uncertain environment. With a model structure

which includes time-varying parameters and lagged dependent variables, Beck and Wieland (2002)

have shown the convergence of the parameter estimates to their actual values. Also, with the use of

a multi-period loss function, he found that the estimates of the impact coefficient would be biased

towards zero in the presence of uncertainty, causing policymakers to prioritize gradualism as the

optimal decision to mitigate exogenous shocks.

7



3 Model Environment and Benchmark Example

In the initial model structure, the central bank’s decision-making process is characterized by an

inflation equation. The relationship between the level of inflation πt, the policy interest rate Rt, and

the output gap, yt is commonly referred to as the Phillips Curve (PC) specification. Equation (1) of

the current model structure defines the PC equation without the addition of an output gap variable

yt. The inflation rate, depicted in equation (1), is negatively impacted by increases in the policy

interest rate Rt. As detailed in the Keynesian literature by Clarida, Gali, and Gertler (1999), in-

creases in the policy interest rate will raise the borrowing costs of economic agents and ultimately

slow aggregate demand.

The impact parameter ϕ captures the contemporaneous response of the level of inflation in the

economy to changes in the policy interest rate Rt. In addition, the inflation variable, denoted πt, is

also partially explained by an autoregressive term of order one πt−1. This term helps account for

the dynamic variations in the inflation rate. Shocks to inflation will have a persistent impact on its

future realizations. It accounts for what is known in the literature as “inflation inertia”. Studies

such as those of Mavroeidis, Plagborg-Moller, and Stock (2014) and Kimura and Kurozumi (2007)

have investigated the potential role of a lag component as a factor driving inertia in the inflation

rate. In the model, the impact of past realizations of inflation on its current value is governed by

the parameter λ. It is set constant for the initial scenarios that do not include parameter variability

on the inflation persistence coefficient.

This scenario will serve as a benchmark example for the subsequent exercises. The central

bank has to account for an exogenous independent and normally distributed cost-push shock εt

with mean 0 and variance σ2
ε . In this model structure, policymakers are only observing realizations

of the nominal interest rate Rt and inflation πt. Contrary to the structure in Ferrero et al. (2019), the

monetary authority does not know the distribution of the exogenous shocks in the economy. Fol-

lowing the backward-looking structure detailed in Söderström (2002), the realizations of inflation

8



are thus found as follows:

πt = −ϕRt + λπt−1 + εt (1)

εt ∼ N(0, σ2
ε ).

The interest rate decision variable Rt is defined as an autoregressive process of order one with

parameter ρ. It is also characterized by an exogenous independent and normally distributed ηt

shock of mean 0 and a variance of 1. Thus, the interest rate is defined accordingly:

Rt = ρRt−1 + ηt, 0 < ρ < 1 (2)

ηt ∼ N(0, 1).

The initial values of the parameters ϕ, λ and ρ are set to be equal to 0.05, 0.55, and 0.7, re-

spectively, following the findings of Mavroeidis et al. (2014). Details on how these values were

determined can be found in Appendix C. Under this framework, the parameter ρ, which refers to

the contemporaneous impact of Rt on inflation, is limited to values between 0 and 1 to ensure that

the interest rate is both positively autocorrelated and stationary.

With the current framework, the interest rate variable Rt is completely exogenous from mone-

tary policy decisions. Thus, the central bank will not be able to prevent deviations of the inflation

rate from its target entirely. It will rather focus on effectively learning the value of parameters ϕ

and λ, which constitute the inflation equation. The central bank can do so since the variation in

equation (1) is entirely exogenous. Later on, we will see if the learnability task remains achievable

by the central bank with the addition of an endogenous interest-rate reaction function and param-

eter variability. The realizations of the inflation πt will be characterized as follows by substituting
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the interest-rate decision rule (2) in the PC equation (1):

πt = −ϕ ·
[
ρRt−1 + ηt

]
+ λπt−1 + εt. (3)

The sequence of events of the learning process, conducted by the central bank as it tracks the esti-

mates with a Recursive Least Squares (RLS) algorithm, can be described as follows:

1. The exogenous interest-rate shock ηt is realized initially. With equation (2) of the model

structure, the central bank can observe the contemporaneous observation of the interest rate Rt

from its realized lagged value Rt−1. The persistence parameter ρ is assumed to be exogenous from

the decisions of the central bank.

2. The central bank will perform recursive estimations of the inflation equation to progressively

learn the values of the parameters ϕ and λ, which dictate the response of inflation to its past realiza-

tions and the interest rate Rt. The central bank will only observe past realizations of the variables

Rt and πt. The central bank cannot observe the true value of the estimated parameters but only

learn them over time with the addition of subsequent realizations of inflation and the interest rate.

I will denote the central bank’s estimates (ϕ̂t, λ̂t) as their assessment at the beginning of period t

using information contained in observations (πt−1, Rt−1) ending in the previous period.

3. Following the estimation of the parameters by the central bank, the cost-push shock εt

included in the PC equation is realized. This exogenous shock will not be accounted for con-

temporaneously by policymakers since they make their policy instrument decision Rt prior to the

realization of the aforementioned shock εt.

4. The inflation variable πt is then realized with information contained in its past realization

πt−1, the interest rate Rt and all underlying parameter and shock values (ϕ, λ, and εt).
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In this scenario, the standard deviation of the shock εt, σε is set to take positive values to pre-

vent potential instances where the inflation rate would be equal to zero in the first iterations of the

algorithm. The lack of variation in inflation would prevent policymakers from accurately estimat-

ing the values of the parameters ϕ and λ recursively and ultimately converge to their actual values.

Numerical methods were used to perform an estimation of the various models presented in this

essay. Models that include a more straightforward structure as in Mendes, Murchison, and Wilkins

(2017) can be solved analytically with pen and paper for the variance of inflation and the optimal

interest rate response. However, as soon as one departs from this model structure with the addition

of a dynamic structure in the interest rate decision and variability in multiple parameters, as it will

later be added, it becomes challenging to find the appropriate central bank’s response analytically.

The RLS algorithm was selected to conduct the simulations following the findings by Evans and

Honkapohja (2012) that showed that the equilibrium obtained under rational expectations was sta-

ble and that the estimates obtained via an RLS algorithm would converge to their actual value to

allow progressive learnability by policymakers.

Figure 1 depicts the median realizations of the ratio of λ/ϕ performed over 99 Monte-Carlo

simulations of the recursive learning algorithm. The estimations were conducted with a positive

standard deviation of the cost-push shock ε, σε = 0.01. Section 4 will later clarify why I am using

this measure to illustrate the convergence of the parameter estimates. The actual mean values of

the parameters ϕ and λ are set to 0.05 and 0.55, respectively. Details on the simulation proce-

dure can be found in Appendix C relative to the choice of the values. The actual realizations of

the ratio are shown in blue and are set to take the value 11 (0.55\0.05). The median estimates of

the ratio are shown in red along with the 25th and 75th percentiles of realizations shown in dark red.
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Figure 1: Median Estimates with an Exogenous Interest-Rate Rule

These results confirm that the central bank can progressively learn the actual value of the pa-

rameters ϕ and λ. One can see in Figure 1 that the ratio λ/ϕ, which characterizes the level of

aggressiveness deployed by the central bank to control variations in the inflation rate, converges

quite rapidly to its actual value. Later on, the definition of the ratio will play a role in setting

the optimal policy when decisions by the central bank on the interest rate level Rt are not wholly

exogenous. In Figure 1, the central bank is able to continuously estimate the constant actual value

of λ/ϕ within reasonably closed bound following the first observations of the algorithm. Measures

of the learning accuracy can be found in Table 2 of Appendix B. In the present case, learnability is

achieved because the interest rate variable Rt, defined in equation (2), is entirely exogenous to the

central bank since its realizations do not involve an endogenous feedback effect in inflation.

Median realizations of the variance of the inflation rate can be found in Table 1 of Appendix

A. In the current scenario, the variance of inflation is slightly positive. The inflation rate in the

economy varies due to the addition of exogenous variation in the form of the interest rate shock ηt,

and the cost-push shock εt. In this scenario, the central bank is not actively trying to stabilize the
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level of inflation entirely to its target of zero. Its main goal resides in learning the parameter values

that are part of the equation (1). We will see later on if the central bank can still achieve its goal of

learnability with an endogenous feedback interest-rate rule. The realizations of the inflation rate

πt remain centered around the target of zero with the absence of an intercept in the model structure.

4 Feedback Interest-Rate Rule

After noting that the central bank can gradually learn the value of the parameters of the PC

equation, the structure of the model will be changed to include a feedback component in the in-

terest rate decision rule. It will allow the central bank to try to control the level of inflation in the

economy while continuing to learn the parameter values effectively. The PC equation preserves

its initial structure with an autoregressive inflation term πt−1 and interest rate component Rt, which

accounts for the inflation response to interest rate fluctuations. The structure of the interest-rate

decision Rt departs from equation (2). In the current case, the central bank’s interest-rate deci-

sion incorporates exogenous and endogenous components. First, the exogenous component is still

defined as in equation (2) with an autoregressive structure of order one Rt−1 and an exogenous

interest rate shock ηt. The standard deviation of the interest rate shock ηt has to be large enough

to yield sufficient exogenous variation. It then allows the central bank to estimate the values of the

parameters appropriately. Second, an endogenous factor is introduced as the central bank tries to

minimize a single-period quadratic loss function of the inflation rate:

L = Et
[
π2

t
]

= Et
[
(−ϕRt + λπt−1 + εt)2]. (4)
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The equation is minimized when the expected value of the inflation rate πt is equal to zero. It yields

the following expression for the endogenous component of the interest rate Rt as Et[εt] = 0:

Rt = arg min Et
[
π2

t
]

(5)

∂L
∂Rt

= 2 · Et
[
(−ϕRt + λπt−1 + εt) · −ϕ

]
= 0 (6)

Rt =
λ̂t

ϕ̂t
πt−1. (7)

As described previously, the ratio of parameters λ/ϕ refers to the degree to which the central

bank will respond as it sets its policy rate Rt to changes in past inflation πt−1 in order to control

contemporaneous realizations of inflation πt ultimately. The variables of the ratio include a t sub-

script indicating that the central bank is estimating their value at time t with information available

until the end of the previous period. The endogenous component defined in equation (7) will be

combined with the exogenous factor defined in equation (2) as the central bank will continue to try

estimating the values of λ and ϕ. The interest-rate equation Rt then cumulates the two expressions

in equation (9). As detailed previously, the central bank will estimate λ̂ and ϕ̂ to set its policy rate.

The model structure will take the following form:

πt = −ϕRt + λπt−1 + εt (8)

Rt = ρRt−1 + ηt +
λ̂t

ϕ̂t
πt−1, 0 < ρ < 1 (9)

εt ∼ N(0, σ2
ε ), ηt ∼ N(0, 1).

The algorithm subsequently generates inflation realizations by substituting equation (9) in the in-

flation equation (8). This yields the law of motion of inflation:

πt = −ϕ ·
[
ρRt−1 + ηt +

λ̂t

ϕ̂t
πt−1

]
+ λπt−1 + εt. (10)
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Notice that the inflation rate now depends on both the actual parameter values as well as the esti-

mates performed by the central bank. The targeted value πt remains centered around zero without

the addition of an intercept in the inflation equation in the model structure. Policymakers still as-

sume that the parameter values ϕ and λ are uncertain as they estimate them over time.

Figure 2 depicts in red the median estimated ratio of λ/ϕ performed by the central bank with the

feedback interest rule Rt defined in equation (9) over 99 Monte-Carlo simulations of the recursive

learning algorithm. The 25th and 75th percentile measures of the estimates are depicted in dark

red. The blue dashed line illustrates the actual value of the ratio λ/ϕ. To allow comparison with

other exercises, the standard deviation of the shock εt, σε remains equal to 0.01.

Figure 2: Median Estimates with a Feedback Interest-Rate Rule

Figure 2 confirms that, with the addition of the endogenous feedback component in the interest-

rate decision equation Rt, the central bank is still able to progressively learn the actual value of the

parameters of ϕ and λ. The estimates ϕ̂t and λ̂t converge at a similar rate than during the previ-

ous exercise as they reach close to their respective true values within the first few iterations of the
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algorithm and remain close to the objective for the whole sample. Quantitative evaluation of the

learning accuracy can be found in Table 2 of Appendix B.

Moreover, the variation in inflation can be explained by the presence of exogenous shocks ηt

and εt in the interest-rate decision rule and in the PC equations, respectively. Following the addi-

tion of the endogenous component in the interest rate decision rule, the central bank is better able

to control inflation variations than in the previous case where the interest rate was determined en-

tirely exogenously from its monetary decisions. As shown in Table 1 of Appendix A, the median

variance of inflation is hampered compared to its initial level found in the benchmark example.

With the introduction of the endogenous interest-rate component, the central bank seems more apt

to control variations in the inflation rate. In contrast with the model structure illustrated in Beck

and Wieland (2002), the central bank is not operating deliberately in allowing a positive level of

inflation to improve learnability. In the current set-up, it does not constitute a deliberate choice

made by the central bank as it tries, unsuccessfully, to mitigate deviations in the inflation rate en-

tirely.

Furthermore, even though the interest rate decision process performed by the central bank is

not entirely exogenous, it is better able to pin down the value of the parameters during the iterative

process. A measure quantifying the squared difference between the estimates and the actual value

of the ratio λ/ϕ, serving as a proxy of the central bank’s convergence ability, can be found in Table

2 of Appendix B. It may seem counter-intuitive at first as one could think that the central bank

would have a harder time learning the parameter values accurately while controlling the level of

inflation simultaneously. However, it seems that by having a better grasp of inflation variations,

the central bank can better forecast the parameter values over time. The policymakers do not ap-

pear to be facing a potential tradeoff between learning the values of the parameters and effectively

stabilizing the inflation rate.
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5 Introduction of Parameter Variability

Following the understanding that the central bank can learn the parameter values progressively

with the inclusion of a feedback interest rate equation, the structure of the model will now incor-

porate parameter variability. The parameter ϕt will be defined as a random variable of mean ϕ̄

endowed with an independent and normally distributed shock νt with mean 0 and variance σ2
ν. In

the simulation exercise, the mean value ϕ̄ is set to 0.05. The actual value of the parameter ϕt will

vary in time as the central bank continues to estimate its now time-evolving value recursively. In

previous exercises, its mean value was set constant to ϕ. The time-varying parameter ϕt is now

defined as follows:

ϕt = ϕ̄ + νt (11)

νt ∼ N(0, σ2
ν).

The PC equation preserves its initial structure with an autoregressive component πt−1 and an

interest-rate component Rt, which accounts for the inflation response to fluctuations in the level

of the interest rate. The value of the inflation persistence coefficient λ remains constant in this

scenario. The model structure will now take the following form as the central bank continues to

try estimating the values of both parameters ϕ and λ while the true structure of the model now

includes parameter variability:

πt = −ϕtRt + λπt−1 + εt (12)

Rt = ρRt−1 + ηt +
λ̂t

ϕ̂t
πt−1, 0 < ρ < 1 (13)

εt ∼ N(0, σ2
ε ), ηt. ∼ N(0, 1).
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The inflation realizations are then defined as follows at each iteration cycle of the algorithm by

substituting equations (11) and (13) in equation (12):

πt = −(ϕ̄ + νt) ·
[
ρRt−1 + ηt +

λ̂t

ϕ̂t
πt−1

]
+ λπt−1 + εt. (14)

In this scenario, the impact parameter ϕt will vary over time in the sample. The standard de-

viation of the shock νt, σν is set to 0.01. As detailed in Söderström (2002), the realizations of the

shocks to the parameters are drawn from the same distribution, which disregards potential issues

concerning simultaneous experimentation and price stabilization performed by the central bank.

Furthermore, this level of variability in the impact parameter was chosen to prevent the true re-

alizations of the parameter ϕt to become negative and to potentially lead to an inversion of the

relationship between inflation and the policy interest rate. Under this alternative context, increases

in the interest rate Rt would counter-intuitively lead to increases in the inflation rate. Also, as

demonstrated in Mendes et al. (2017), potential policy errors associated with an inadequate level

of the nominal interest Rt would be multiplied by the newly added shock νt. The additional term

νtρRt−1 in the PC equation could cause multiplicative excess volatility in inflation if the parameter

ϕt is not properly estimated. In theory, policymakers would subsequently adopt a wait-and-see

approach to avoid causing undesirable volatility to the inflation rate.

In the present model, as detailed in Batini, Martin, and Salmon (1999), policymakers that fol-

low the feedback interest rate rule can offset the effects of a shock to the inflation rate entirely

within a given period. The expected deviation of future inflation from its target at time t would be

equal to zero. In doing so, the central bank would prevent inflation variations from persisting over

multiple periods. Beck and Wieland (2002) and Mendes et al. (2017) have included the standard

deviation of the interest rate shock σν as part of the denominator of the endogenous component

in the feedback interest rate decision, defined in equation (7), when endowing the structure of the

impact parameter with uncertainty. However, the difference in construction with the present essay
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lies in the fact that the current model is structured with a static one-period loss function instead of

using a multi-period loss function. In a multi-period loss function with an uncertain environment,

central banks have to account for the persistence of the effects of past exogenous shocks on the

contemporaneous realization of the inflation rate when intervening on the interest rate. Thus, they

have to account for the potential propagation of inflation deviations on multiple periods.

In this scenario, the central bank will once more estimate recursively the values of the parame-

ters ϕt and λ while simultaneously regulating the level of inflation to be as close as possible to its

targeted value. In an effort of comparison with other exercises, the standard deviation of the shock

εt, σε is set to 0.01. The sequence of events can be restated for the specific structure with parameter

variability to remind the reader of the sequence of events. First, the exogenous shocks εt, ηt, and νt

are realized simultaneously at the beginning of period t. The true values of the parameter ϕt and λ

are realized following the initial realizations of the exogenous shocks present in the model struc-

ture. Second, as defined in previous exercises, the central bank can observe past realizations of πt−1

and Rt−1. It can subsequently construct the estimates λ̂ and ϕ̂t using a RLS algorithm. Following

the interest rate decision, the inflation rate is realized as well in period t. The whole process is then

repeated iteratively.

Figure 3 depicts the median realizations of the ratio of parameters λ/ϕ performed by the cen-

tral bank with the feedback interest rule Rt and the inclusion of parameter variability on ϕt over

99 Monte-Carlo simulations of the recursive learning algorithm. Figure 3 confirms that, while

using a feedback interest rate rule Rt and accounting for the inclusion of parameter variability on

the impact coefficient ϕt, the central bank is still able to progressively learn the mean value of the

parameters ϕ̄ and λ. The time-varying true values of the parameters λ/ϕt are depicted with a blue

line in Figure 3. The mean value of the ratio λ/ϕ̄ is shown in black in the graph.
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Figure 3: Median Estimates with Variability on the Impact Parameter ϕt

As mentioned above, one can notice that the median value of the ratio λ/ϕ is still learnable

over time by the central bank as the estimates of the ratio converge to its mean value λ/ϕ̄. In

this structure, since the normal distribution is symmetric, the median value of the actual ratio cor-

responds to its mean. The estimates converge to its mean value despite the ϕt, not including a

time-persistency component. Later on, the model structure will include persistence in the impact

coefficient.

The simulations with added parameter variability show that the estimates of the ratio λ/ϕ con-

verge at a slower pace to its respective real value than in previous cases. The efficiency of the

convergence algorithm can also be seen in the gradual narrowing of the range between the 25th

and 75th percentiles of observations. A quantitative measure of convergence efficiency can be

found in Table 2 of Appendix B. It shows that the convergence process is not as efficient as in

previous cases. Graphically, one can see, especially in the initial periods, that the inter-quartile

range is more extensive than in previous instances that did not include parameter variability in

their structures.
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Moreover, the response measured by the ratio of λ/ϕ indicates that the central bank would

act more cautiously following the introduction of the endogenous term in its decision function. It

can be seen that, compared to the median response in Figures 1 and 2, the optimal response of

the central bank to variations in the inflation rate would be more gradual. Graphically, one can

see that the red median line remains below the mean value of λ/ϕ̄ depicted in black for the entire

sample. In this context, the central bank prefers to act cautiously instead of reacting decisively and

risking drastic variations in the inflation rate as a consequence. As shown in Figure 3, the ratio

slowly converges towards its true value following the initial underestimation of its actual value by

the central bank. This finding would suggest a confirmation of the Brainard (1967) effect where

central banks would adopt a more cautious approach in equilibrium when facing uncertainty in the

transition parameter ϕt.

The inclusion of variability on the impact coefficient has slightly affected the central bank’s

ability to control the variance of the inflation rate in the economy. Readers are directed to Table 1 of

Appendix A for a quantitative comparison of the central bank’s efficiency in mitigating deviations

in the inflation rate. The median estimates of the variance are slightly more elevated in the present

scenario compared to the previous case that included an endogenous feedback component in the

interest rate decision equation but omitted parameter variability on ϕt. A pronounced variance of

inflation would indicate that the central bank cannot stabilize inflation as efficiently while trying to

learn the parameter values newly endowed with time-variability.

6 Parametrization

This section will serve as a robustness exercise to test whether the choice of parameter values

has an impact on the learnability of parameter values. A natural exercise is to increase the variabil-

ity of the interest-rate exogenous shock νt, defined in equation (11), while preserving the standard
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deviation of the cost-push shock εt constant. Intuitively, if the observations of the parameter ϕt

are more volatile around its mean value, it should become more challenging for the central bank

to predict its actual value overtime correctly. To test this assumption, the standard deviation of

the shock νt, σν was increased above its original value of 0.01 to either 0.02 or 0.05. Figure 4

illustrates the median estimates of the ratio λ/ϕt in red, blue, green for increasing values of the

standard deviation σν to 0.01, 0.02 and 0.05 respectively. The value of the standard deviation of

the cost-push shock σε was set constant to 0.01 in all scenarios.

Figure 4: Median Estimates with Increasing Variability on the Impact Parameter ϕt

Figure 4 confirms that the rate of convergence is slower when the parameter ϕt fluctuates more

around its mean value with the growing values of the standard deviation of the impact parameter

shock νt. The starting point estimates are also lower. It reinforces the previous findings that the

gradual approach would be optimal in the face of considerable variability in the impact parameter.

As economic intuition would predict, policymakers have more difficulty correctly estimating the

values of the parameters when they are highly variable. Nevertheless, the central bank can still

simultaneously control the level of inflation relatively close to its target of zero in all three cases.
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Another potential exercise to validate the findings of learnability is to investigate variations in

the standard deviation of the cost-push shocks εt in the inflation equation (14) while keeping con-

stant the value of the standard deviation of the impact parameter shock νt. The standard deviation

of εt, σε is increased from 0.01 to either 0.02 and 0.05. Figure 5 confirms that the central bank

seems to be more apt to learn the parameter values when the variability of the cost-push shock εt

increases. With heightened exogenous variation in the PC equation, the central bank can accurately

estimate the value of the parameters faster as its estimates converge more quickly within reasonable

bounds of the ratio λ/ϕ. More pronounced volatility in the cost-push shock εt increases the vari-

ability in past observations of inflation, which is a regressor in the interest rate decision equation.

The heightened exogenous variation subsequently helps the central bank to achieve learnability

when recursively estimating the parameter values. Moreover, the central bank can still bring the

inflation rate close to its targeted value. The value of the standard deviation of the impact parame-

ter σν in all scenarios was set constant to 0.01.

Figure 5: Median Estimates with Variability on the Cost-Push Shock εt
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Moreover, the choice of the value for the parameter λ, which describes the persistence level in

the inflation rate, should not affect the previous findings of learnability and price stability achieved

by the central bank. However, the optimal response might vary according to the persistence factor

of inflation, λ. For example, with a less persistent law of motion of inflation, the realizations of in-

flation will become more influenced by the contemporaneous realizations of the exogenous shock

εt. As seen previously, increases in the variability of the cost-push shock do not affect learnability

of the parameter values. In the previous parametrization exercise, increasing the standard devia-

tion of the cost-push shock εt led to a reduction in the time required to obtain convergence of the

estimates.

Figure 6 describes two estimation exercises that incorporate different levels of parameter vari-

ability while varying the value of the persistence coefficient λ. Panel A of Figure 6 illustrates the

instance of low parameter variability where σε and σν are set to 0.01. Panel B of Figure 6 rather

illustrates the instance with increased variability with more pronounced values for the standard

deviations of the shocks in the model as σε and σν are set to 0.05.

Figure 6: Median Estimates with Increasing Persistence λ in Inflation

The current scenario is conducted to confirm whether the realizations of the learning process

are in line with the findings in Ferrero et al. (2019). In Ferrero et al. (2019), the persistence of in-

flation is modeled as the relative persistence in the cost-push shock εt. An auto-regressive process
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of order one is defined to capture the persistence factor in the shock. However, in the context of

the present essay, it would have been challenging to implement a similar model structure. It would

have required a learning process of the cost-push shock conducted by the central bank.

In the present case, the persistence in inflation is instead modeled with variations in the per-

sistence parameter λ in the PC equation. The red, blue, and green lines display estimates of the

ratio λ/ϕt with increasing values of the parameter λ from 0.3 to 0.5 and 0.7, respectively. As pre-

viously mentioned, the level of aggressiveness of a central bank in response to variations in the

inflation rate is visually represented by the initial position of the estimated ratio compared to the

actual value. For example, if the estimated ratio converges from above, the central bank will dis-

play an aggressive response on its interest rate to fluctuations in inflation, as defined in equation (7).

As shown in Ferrero et al. (2019), within an environment that is endowed with a lesser degree

of parameter variability, the central bank will adopt a more gradual approach if it recognizes the ex-

ogenous cost-push shock to be less persistent. The illustration in panel A of Figure 6 replicates that

behavior as the estimates computed with a higher degree of persistence shown in green converges

to the actual value from below. However, the other estimates which incorporate a lesser degree of

persistence are converging from below as well and are not significantly different in magnitude.

In addition, one can find in panel B of Figure 6 that, in contrast with findings in Ferrero et

al. (2019), the central bank will adopt a slightly more gradual approach within a highly variable

environment associated with pronounced persistence in inflation to stabilize the level of inflation.

As shown in panel B of Figure 6, regardless of the level of persistence in inflation, the optimal

response of the central bank will be to adopt a cautious approach with pronounced parameter vari-

ability. Moreover, one can note that the optimal responses shown in panel B of Figure 6 will display

an enhanced caution effect compared to the reactions shown in panel A of Figure 6, regardless of

the level of persistence in the inflation rate.
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The difference in results with Ferrero et al. (2019) may reside in the fact that the present central

bank uses a myopic rule as it tries to control inflation contemporaneously. An aggressive approach

would be required to prevent deviations of inflation from its target to persist in time. Moreover, in

instances where the shock is not persistent, an aggressive approach might not be suitable if it has

the potential to cause large avoidable swings in the inflation rate, leading to losses incurred as part

of the central bank’s loss function defined in equation (4).

The selection of parameter values for other coefficients in the model structure presented in

section 5 will not impact the learning process and the stabilization effort on the inflation rate

conducted by the central bank. For example, varying the mean value of the impact parameter ϕ, ϕ̄

will not affect the previous findings. As long as its mean value remains positive, the relationship

between the interest rate variable Rt and the corresponding inflation rate will remain intact. Also,

changing the value of the parameter ρ, which measures the interest rate persistence over time, as

defined in equation (2), will not affect the results found previously. As long as the parameter ρ

displays a sufficient degree of persistence and remains below 1, it should not affect the previous

findings.

7 Extensions

7.1 Intercept

Some extensions to the problem detailed in section 5 can be introduced to enhance the practi-

cality of the model structure with parameter variability. For example, it might be interesting to add

an intercept α to the construction of the inflation equation. This addition would reflect a typical

inflation-targeting regime where a central bank sets a target for the desired rate of inflation in the

economy. Currently, the inflation targeted inflation rate is commonly established at a rate of 2

percent annually. In the model, it would, therefore, be possible to add an intercept α and to set the
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inflation target to 2 percent. The new PC equation takes the following form:

πt = α − ϕtRt + λπt−1 + εt. (15)

In section 5, the targeted rate of inflation is implicitly set to 0. Therefore, in the initial simu-

lations, the central bank seeks to maintain the inflation rate at 0 percent to the best of its ability.

Thus, the sole change from the previous cases would have the central bank stabilizing the level of

inflation around a new threshold of 2 percent. The mean value of the interest rate would evolve

according to the choice of the inflation target in the economy. The optimal interest-rate rule can

be found by solving the central bank’s loss function that penalizes variations in the inflation rate

relative to its target π∗:

L = Et
[
(πt − π

∗)2] = Et
[
(α − ϕtRt + λπt−1 + εt − π

∗)2]. (16)

As mentioned in Mendes et al. (2017), a quadratic loss function implies that the central bank

will be more concerned with significant deviations of the inflation rate from its target and that

incurred losses are symmetric around the target. One can derive the optimal interest rate Rt mini-

mizing the loss function with the inflation target defined as π∗ = 2 and Et[εt] = 0:

∂L
∂Rt

= 2 · Et
[
(α − ϕtRt + λπt−1 + εt − π

∗) · −ϕ
]

= 0 (17)

Rt =
(α̂t − π

∗) + λ̂tπt−1

ϕ̂t
. (18)

The central bank will, therefore, have to recursively estimate the value of the intercept α in

addition to the two standard parameters (ϕt, λ) in the PC equation. The inflation realizations will

take the following form by substituting equations (11) and (18) in equation (15):

πt = α − (ϕ̄ + νt) ·
[
ρRt−1 + ηt +

(α̂t − π
∗) + λ̂tπt−1

ϕ̂t

]
+ λπt−1 + εt. (19)
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The standard deviation of the interest rate shock ηt was increased to 2 instead of remaining

equal to 1 as in previous scenarios to ensure sufficient exogenous variation. Intuitively, the intro-

duction of the time-varying estimates of α̂t induces addition endogenous variation as the central

bank has to compute the difference between its estimates of the intercept and the inflation target in

order to adopt its policy interest rate. To offset such a change, it emerges that one requires more

exogenous variation in the interest rate structure to ensure learnability. Subsequently, policymak-

ers will be able to gradually estimate the value of the parameters that characterize the PC equation

defined in equation (15) and prevent deviations of the inflation rate from its target of 2 percent

effectively. Intuitively, the realizations of the inflation rate are now centered around its mean of 2

percent.

Figure 7: Median Estimates with an Intercept α

Panel A of Figure 7 illustrates the median estimates of the intercept αt, while panel B of Figure

7 shows the median estimates of the ratio λ/ϕt in red computed over 99 Monte-Carlo iterations

of the RLS algorithm. Panel A of Figure 7 shows that the central bank can learn progressively

the value of the intercept α when its values are set to 2 with the progressive narrowing of the

interquartile range shown in dark red. The learning process of the intercept value is conducted

concomitantly with the estimations of the ratio λ/ϕ̄ as in the previous scenarios. In addition, one

can see in Table 1 of Appendix A the similarities in the magnitude of the variance of inflation

relative to the other cases as the central bank can still mitigate deviations of the inflation rate rea-
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sonably well. In conclusion, the addition of the intercept value does not interfere in the learnability

process and previous findings.

7.2 Slowly-Evolving Impact Parameter Variability

Following the confirmation that the central bank can learn the value of the parameters, even

though the structure of the model incorporates variability in the impact parameter ϕt, it would

be interesting to see whether changing the form of the randomness in the impact parameter ϕt

can affect the central bank’s optimal response. Thus, the parameter ϕt will now take the form

of a stationary autoregressive process of order one with an independent and normally distributed

exogenous shock νt with mean 0 and variance of σ2
ν. Its mean value ϕ̄ will remain set to the

previous value of 0.05. The new structure of the time-varying parameter ϕt will take the following

form:

(ϕt − ϕ̄) = γ · (ϕt−1 − ϕ̄) + νt (20)

νt ∼ N(0, σ2
ν).

The autoregressive nature of the parameter ϕt will allow its values to have a slowly-evolving

law of motion. Thus, the present value of the impact parameter will incorporate a persistent ef-

fect of past realizations of exogenous shocks. By carefully selecting the standard deviation of the

exogenous shock νt and the persistence parameter γ, one can ensure that the parameter value and

its estimate remain stationary and within a reasonably close interval of its mean value. For this

exercise, the value of the parameters γ and σnu are set to 0.8 and 0.01, respectively. This selec-

tion helps to prevent extreme and unrealistic fluctuations in the value of the impact parameter. As

previously stated, the parameter value of ϕt, if not properly defined, could become negative for a

sizeable part of the sample. In turn, it would mean that increases in the policy interest rate are

positively correlated with hikes in the inflation rate. Moreover, both inflation and the interest-rate
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decision equations will remain in their previously-defined structures as detailed in equations (12)

and (13).

In addition, the estimation procedure of the central bank will vary from an RLS algorithm

performed with an expanding window to a rolling window estimation, where the central bank es-

timates the parameter values over a selected portion of the sample instead of the entire historical

series. By not relying on extended historical samples and computing estimates with a fixed win-

dow size, policymakers would avoid potential structural breaks in the data.

In the current exercise, the rolling window size is set to 50 observations and remains constant

over the entire iteration process. With the slowly-evolving structure of the impact parameter ϕt,

the central bank should be able to estimate the parameter values better as it only considers the

more recent observations. The latest observations of the algorithm capture the most up-to-date

information about the contemporaneous realization of the parameter. It allows the central bank

to gain insight into its present value and progressively improve its estimates. To facilitate the

estimation of the parameter ϕt by the central bank, equation (20) can be rewritten:

ϕt = (1 − γ) · ϕ̄ + γϕt−1 + νt (21)

νt ∼ N(0, σ2
ν).

By substituting equation (21) in combination with equation (13) in the PC equation (12), one

can find the realizations of inflation:

πt = −
[
(1 − γ) · ϕ̄ + γϕt−1 + νt

]
·

[
ρRt−1 + ηt +

λ̂tπt−1

ϕ̂t

]
+ λπt−1 + εt. (22)

Panel A of Figure 8 shows the median estimates of the ratio λ/ϕt computed with the rolling

window algorithm of a fixed window size of 50 observations. Panel B of Figure 8 details the

estimates of the same ratio λ/ϕt, but its estimates were computed using the original expanding
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algorithm. The estimations were conducted without the addition of an intercept in the inflation

equation.

Figure 8: Median Estimates with Persistence in the Impact Parameter ϕt

Notice that the new structure of the parameter ϕt gives a slowly-evolving form to the ratio

λ/ϕ. The central bank’s estimates of the actual ratio are well specified as it can learn the param-

eter values progressively with the addition of persistence in the impact parameter. As shown in

panel A of Figure 8, the central bank, which is using a rolling window to estimate the ratio in this

case, converges to the mean value faster than in the scenario computed with an expanding window

algorithm. The rolling window algorithm seems to help remove some historical observations that

might not be informative on the contemporaneous value of the ratio λ/ϕt. By factoring information

closer in time, the central bank can perform better-informed decisions on its optimal interest rate

level with a persistent impact parameter ϕt. The rolling window estimation procedure seems to

capture the autoregressive nature of the ratio better as it was induced in the impact parameter ϕt.

The convergence interval does, however, narrow to similar values at the end of the sample when

calculating the estimates with either choice of algorithm. It would indicate that some past obser-

vations still contain, at the margin, some information about the current value of the ratio λ/ϕt. In

both instances, the central bank is once again able to control variations in inflation in a comparable

fashion than previous scenarios, as shown in Table 1 of Appendix A.
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7.3 Introduction of an IS Equation

It would be interesting to aim towards the structure of the Neo-Keynesian model after hav-

ing noted the effective learning of the parameter values in the previous models. As conducted in

Söderström (2002), which includes a backward-looking IS equation, the current model structure

could introduce an IS equation where the output gap variable yt reacts to variations in the real

interest rate. Thus, by extension, the inflation rate would no longer respond directly to changes in

the nominal interest rate, as was the case in previous simulation scenarios. The inflation rate would

instead respond to changes in the output gap, which values are dictated in part by the realizations

of the real interest rate rt. The real interest rate rt is defined as the difference between the nominal

interest rate Rt, and the inflation rate πt.

The consolidated model structure, which includes an IS equation, should not affect any of the

findings. In this present case, the interest-rate decision equation can be modeled as a purely ex-

ogenous process, as defined in equation (2). The output gap yt would react negatively to variations

in the real interest rate. One can then couple the IS equation with an independent and normally

distributed demand shock ψ of mean 0 and variance σ2
ψ. The PC equation would then incorporate

the output gap variable, an autoregressive term of order one of the inflation rate πt−1 with an exoge-

nous shock ε̃t as previously defined. The augmented model, with the addition of the IS equation,

would take the following form:

Rt = ρRt−1 + ηt, 0 < ρ < 1 (23)

yt = −δ(Rt − πt) + ψt (24)

πt = λyyt + λππt−1 + ε̃t (25)

ε̃t ∼ N(0, σ2
ε̃t
), ηt ∼ N(0, 1), ψt ∼ N(0, σ2

ψ).

One can rearrange the model by substituting the output gap equation (24) in the PC equation
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(25) and isolate the contemporaneous inflation term πt:

πt = λy ·

[
− δ(Rt − πt) + ψt

]
+ λππt−1 + ε̃t (26)

πt =
1

1 − λyδ
·

[
− λyδRt + λππt−1 + λyψt + ε̃t

]
. (27)

One could then recover the initial structure of the inflation equation (28) by specifying the

value of certain parameters in equation (27):

πt = −ϕRt + λπt−1 + εt (28)

ϕ =
λyδ

1 − λyδ
, λ =

λπ
1 − λyδ

, εt =
λyψt + ε̃t

1 − λyδ
. (29)

The model structure would not fundamentally differ from the initial version with consolidated

parameter values. Consequently, the addition of an IS equation to the model structure would not

alter in any form the previous findings indicating that the central bank can progressively learn the

parameter values even in the presence of parameter variability. Policymakers would still be able to

regulate the level of inflation, as seen in the Benchmark example.

7.4 Variability on the Transition Parameter

After noting that the central bank is progressively able to learn the parameter values with the

inclusion of parameter variability on the impact coefficient ϕt, the structure of the model shown

in Section 5 can incorporate another source of variability. One can test whether the inclusion of

parameter variability on the parameter λt, which accounts for the relative persistence of the inflation

rate over time, would encourage a different reaction from the central bank than the variability

induced on the impact coefficient. Craine (1979) and Söderström (2002), among others, have

found that the optimal response would vary whether parameter uncertainty was induced on the

measurement coefficient or on the transition parameter in the Phillips curve equation. According
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to their findings, the central bank should opt for a more aggressive approach with the introduction

of parameter variability affecting the law of motion of the inflation variable. One can test these

findings by introducing variability on the parameter λt. The stochastic process of the parameter

λt can then be defined in accordance with the previous definition of ϕt in Section 5 as a random

variable with a mean value of λ̄ coupled with an independent and normally distributed exogenous

shock ξt with mean 0 and variance σ2
ξ . In previous exercises, the parameter was kept constant to

its mean value λ̄. The time-varying parameter λt is now defined as follows:

λt = λ̄ + ξt (30)

ξt ∼ N(0, σ2
ξ).

The model structure will now take the following form as the central bank continues to try

estimating the values of both parameters ϕt and λt as their respective values vary over time:

πt = −ϕtRt + λtπt−1 + εt (31)

Rt = ρRt−1 + ηt +
λ̂t

ϕ̂t
πt−1, 0 < ρ < 1 (32)

ϕt = ϕ̄ + νt (33)

εt ∼ N(0, σ2
ε ), ηt ∼ N(0, 1), νt ∼ N(0, σ2

ν).

The inflation realizations are then defined as follows at each iteration cycle of the algorithm by

substituting equations (30), (32), and (33) in equation (31):

πt = −(ϕ̄ + νt) ·
[
ρRt−1 + ηt +

λ̂t

ϕ̂t
πt−1

]
+ (λ̄ + ξt) · πt−1 + εt. (34)

With the introduction of parameter variability in the persistence component of inflation, the

central bank should, in theory, act more decisively in the initial period to mitigate potential prop-

agation effects from the persistence in inflation, in accordance with Craine (1979). Panel A of
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Figure 9 shows the median estimates of the ratio λt/ϕt where the standard deviation of the shock

to the impact parameter σν is set to 0 to measure the effect of the introduction of variability on the

persistence parameter λt separately. The standard deviation of the shock ξt is set to 0.01. Panel B of

Figure 9 introduces a scenario where both parameters λt and ϕt are time-varying as their respective

shocks ξt and νt are endowed with positive standard deviations. Both standard deviations are set to

0.01 in this case. The standard deviation of the cost-push shock, σε is set to take a constant value

of 0.01 for both panels of Figure 9.

Figure 9: Median Estimates with Variability on the Transition Parameter λt

Panel A of Figure 9 shows that the central bank would react in a slightly cautious fashion since the

starting point of the estimates is converging to the actual ratio from below. By doing so, the central

bank would not cause additional volatility in the inflation rate. Panel B of Figure 9 shows the esti-

mates of the reaction coefficients when introducing variability on the shocks ξt and νt. Contrary to

the findings of Kimura and Kurozumi (2007), in the context of the present essay, the central bank

would prefer to act cautiously when facing heightened variability on both parameters. The rate to

which the estimates of the ratio converge to their actual values is also slower since the central bank

has to account for variability on the pair of parameters. In addition, the central bank is less able

to control inflation as the model structure includes a more significant share of exogenous variation

with a positive standard deviation induced on both shocks ξt and νt. Table 1 of Appendix A can be

consulted for an overview of the median variance of inflation in both instances.
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7.5 Loss Function Equation

One can also test the learning process of the central bank when it has to consider multiple

objectives at once instead of uniquely targeting the level of inflation. In this instance, the central

bank attaches a certain weight on smoothing the variation of the interest rate realizations Rt. It

would try to minimize a single-period quadratic loss function of the inflation rate and the interest

rate deviations:

L = Et
[
π2

t + ω(∆Rt)2] = Et
[
(−ϕRt + λπt−1 + εt)2 + ω(Rt − Rt−1)2]. (35)

As defined in Mendes et al. (2017), monetary authorities are interested in smoothing inter-

est rate variation over time to allow agents to adapt instead of forcing sudden and unanticipated

changes in the policy interest rate. Central banks are also afraid of having to reverse their previous

monetary policy decision in the event of a changing economic situation. Thus, they fear a loss of

credibility among economic agents if they need to reverse their monetary policy stance. Accord-

ing to Mendes et al. (2017), few central banks have ventured to reverse their policy stances under

the current inflation-targeting regimes. The optimal interest-rate decision can then be found by

minimizing the latest loss function (35) by Rt with Et[εt] = 0 and it is determined as follows:

Rt = arg min Et
[
π2

t + ω(∆Rt)2]. (36)

The first-order condition yields the following result:

∂L
∂Rt

= Et[2πt
∂πt

∂Rt
+ 2ω(Rt − Rt−1)] = 0. (37)
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With the initial specification of the Phillips Curve equation (1), one can find the optimal

interest-rate response by the central bank:

Rt =
ω

ϕ̂t
2 + ω

Rt−1 +
ϕ̂tλ̂

ϕ̂t
2 + ω

πt−1. (38)

The model structure includes parameter variability in the impact coefficient ϕt as defined in

equation (11). The realizations of inflation will take the following form when combining equations

(11) and (38) in equation (1):

πt = −(ϕ̄ + νt) ·
[

ω

ϕ̂t
2 + ω

Rt−1 +
ϕ̂tλ̂

ϕ̂t
2 + ω

πt−1 + ηt

]
+ λπt−1 + εt. (39)

The weight placed on the interest-rate smoothing coefficient ω is set to 0.5 to have a meaning-

ful difference with the simulation exercise shown in section 5. Contrary to the previous exercises,

the endogenous component of the interest rate Rt, defined in equation (38), already accounts for

autoregressive variation embedded in the structure of the interest rate. The exogenous shock ηt

will remain in the inflation equation to preserve sufficient exogenous variation and to ensure learn-

ability. The level of aggressiveness displayed by the central bank in response to variations in past

inflation rate is now defined as the coefficient measuring the impact of past realizations of inflation

on the policy rate in equation (38). The estimation process was computed with an expanding win-

dow. Figure 10 shows the median estimates of the ratio λϕ/(ϕ2 + ω) conducted with the addition

of an interest-rate smoothing coefficient in the central bank’s loss function.

Figure 10 shows that the central bank can once again learn the actual values of parameters

with the additional objective of smoothing the interest-rate level of time. The median optimal re-

sponse depicted in red seems to be slightly aggressive as the estimates are converging to the actual

value of the ratio of parameters from above. Table 2 of Appendix B confirms that the addition of

the interest-rate smoothing allows the ratio of the estimates to converge very rapidly to its actual

value. However, as seen in Table 1 of Appendix A, the variance of the inflation realizations is
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higher than the results found in other extensions of the model structure. It seems that the central

bank has more difficulty in effectively stabilizing the level of inflation compared to previous in-

stances since its loss function penalizes large movements in the interest-rate variable from period

to period, which would prevent the central bank from acting more decisively in a given period in

response to shocks. Figure 11 shows the median estimates of the ratio ω/(ϕ2 + ω) conducted with

an interest rate smoothing coefficient in the central bank’s loss function displaying the estimates of

the endogenous level of persistence in the interest rate.

Figure 10: Median Estimates with an Interest-Rate Smoothing (IRS) Loss Function

Furthermore, one can see also in Figure 11 that the central bank is able to accurately esti-

mate the level of persistence in the interest rate decision equation while stabilizing the level of

inflation. The central bank can still achieve learnability, even though the persistence level in the

interest rate is defined endogenously. Previously, the persistence level of the interest rate was de-

termined by the parameter ρ and defined exogenously from the central bank’s interest-rate decision.
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Figure 11: Median Estimates of Inflation Persistence with an IRS Loss Function

7.6 Kalman Filtering Estimation

As previously shown with the rolling window algorithm, the central bank can effectively learn

the value of the parameters. It can be interesting to see if other algorithms, such as the Kalman

filter would allow the central bank to update its prior estimates of the ratio λ/ϕ and thus improve

its estimates with incoming new observations of the inflation rate πt and the policy interest rate

Rt. But, with the methodology developed in Duncan and Horn (1972), one can find that the RLS

estimation algorithm can be interpreted as a Kalman filter structure. Then, using the Kalman filter

yields the same results as the ones found in Section 5 of the essay with the estimations performed

with an RLS algorithm. In the present essay, the inflation rate evolves as follows:

πt = −ϕtRt + λπt−1 + εt. (40)

Using the Evans and Honkapohja (2012) RLS formulas, one can find the estimates of the impact

parameter ϕt and of the inflation persistence parameter λt. The central bank is running an RLS

regression of the inflation rate πt on the vector of variables zt, where zt = [Rt πt−1]. The vector of
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coefficients is defined as follows:

β̂t =
[
− ϕ̂t λ̂t

]′
. (41)

It yields the following results for the dynamics of the estimates when applying the RLS formulas:

β̂t = β̂t−1 + t−1B−1
t zt1

[
πt − β̂tzt

]
(42)

Bt = Bt−1 + t−1[ztz′t − Bt−1
]
. (43)

Bt denotes the variance-covariance matrix of the vector zt using data up to period t, which is updated

according to equation (43). In equation (42), the forecast error is defined as:

Ft =
[
πt − β̂tzt

]
. (44)

If the forecast error is relatively limited, the adjustment to the estimates β̂t will evolve slightly

in accordance. One can see the parallel with the forecast error computed with the Kalman filter

procedure as defined in Duncan and Horn (1972). The Kalman filter state-space structure applied

to the model described in section 7.4 would be represented as follows with the vector of actual

parameter values βt = [−ϕt λt]′ and the vector of shocks to parameters τt = [νt ξt]′:

βt = Ttβ̄ + τt (45)

πt = βtzt + εt. (46)

Equation (45) illustrates the transition equation of the unobserved parameters in the model de-

scribing the evolution of the true values of the parameters. In contrast, equation (46) refers to

the measurement equation, which dictates the contemporaneous response of the variables. In the

model structure used in Section 7.4, the matrix Tt defined in equation (45) would be equal to the

identity matrix as the law of motion of the actual parameters composing the vector βt, whose defi-
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nitions can be found in equations (30) and (33), are evolving around their respective mean values.

The shocks included in the model are following a normal process:

τt

εt

 ∼ N
( 00

 ,
Qt 0

0 Ht


)
. (47)

The matrices Qt and Ht describe the variance matrices associated with the shock vectors τt and εt.

The starting equation for βt can be written in this form:

β1 = β̄ + τ1. (48)

The recursive estimation equations of the Kalman filter are then found as follows for the corre-

sponding model structure defined in previous sections:

β̂t = β̂t−1 + S t−1z′t D
−1
t

[
πt − β̂tzt

]
(49)

S t = S t−1 − S t−1z′t D
−1
t ztS t−1. (50)

where the matrices S t and Dt represent the conditional variances of the inflation rate and of the

forecast error Ft respectively:

β̂1 = β̄; S t = TtS t−1T ′t + Qt;

S 1 = Q1; Dt = Ht + ztS tz′t .

Tedious but straight-forward calculations would show that the Kalman filter estimates in its state-

space form defined equations (49) and (50) reproduce the estimates found with the RLS algorithm

in equations (42) and (43). One can consult Duncan and Horn (1972) for an elaboration of the

equivalence in further detail. It then confirms that the estimates attributed to the RLS method

performed in this essay coincide with the central bank’s estimates measured with a Kalman filter

algorithm.
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8 Concluding Remarks and Further Research

This essay analyses the learning process of parameter values performed by the central bank. It

shows that the monetary authority is able to control the level of inflation close to its target while

learning progressively the values that govern the law of motion of inflation. The essay sought

to analyze whether the optimal behavior of the central bank was influenced by the introduction

of parameter variability in the model. In Section 5, the model structure incorporated parameter

variability in the impact parameter measuring the responses of the interest rate level Rt to past re-

alizations of the inflation. Using numerical methods, I performed estimations of a Phillips Curve

equation with various interest-rate decision rules that guided the responses by the central bank to

exogenous shocks. The median estimates were then computed via 99 Monte-Carlo iterations.

In this essay, I showed that the central bank is able to progressively learn the value of the param-

eters when the interest-rate decision rule is defined as an entirely exogenous process of order one.

In this instance, the central bank has, however, less control over fluctuations in inflation since the

law of motion of the interest rate is an entirely exogenous process. Moreover, I demonstrated that

the monetary authority could learn the parameter values with the addition of a feedback interest-

rate decision, which depended on the optimal rule found by deriving the central bank’s quadratic

one-period loss function. Intuitively, the central bank was more apt to regulate the level of infla-

tion closer to its targeted value. Subsequently, the model structure was endowed with parameter

variability on the parameter, which accounts for the impact of the interest rate on inflation. The

simulations showed that the central bank was still able to learn the mean value of the ratio λ/ϕt.

The central bank would adopt a more cautious approach in accordance with the Brainard (1967)

gradualism principle as the central bank faces heightened parameter uncertainty on the impact

coefficient of the Phillips Curve equation. The monetary authority would then prefer a gradual

approach to mitigate variations in inflation and, thus, prevent significant losses due to an inappro-

priate policy response. In addition, the central bank achieved relative price stability even with the

introduction of additional exogenous shocks within the structure of ϕt.
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Other numerical exercises were also performed using increasing variability in the exogenous

shocks and parameters present in the model structure. The standard deviation of the shocks εt and

νt, σε , and σν were increased to test whether the central bank would change its behavior in the

response of shocks to inflation. The simulation procedure presented in Appendix C details the ad-

ditional values that I used to perform the estimations. These exercises demonstrated an enhanced

caution effect from the central bank when setting its monetary policy under elevated parameter

variability compared to instances shown in the figures of the essay.

The model structure analyzed in this essay is similar to those presented by Brainard (1967)

and Söderström (2002). As in Brainard (1967), the central bank’s loss function is modeled in this

research by a myopic one-period quadratic function of inflation realizations. As in the structure

shown in Söderström (2002), the Phillips Curve equation (1) is defined as a backward-looking

function of the inflation rate. Thus, with these similarities in the structure of the model, it is not

surprising to find results that confirm the findings that the adoption of a more cautious approach by

the central bank would be optimal with the introduction of variability on the value of the impact

parameter. These results were detailed in section 5 of the essay. Even though the impact coef-

ficients in Söderström (2002) were defined as the relationship between the real interest rate and

the output gap as well as the dependency between the output gap and the inflation, results remain

comparable. As shown in Section 7.3, variability on these two relationships can be aggregated into

the variability of a single impact parameter, ϕt. The difference would not alter the findings that the

central bank can progressively learn the parameter values and stabilize inflation.

On the other hand, some studies such as those of Söderström (2002) and Craine (1979) have

found that uncertainty about the dynamics of the inflation rate in the economy would lead to the

adoption of a more aggressive policy by the central bank as its optimal decision. As shown in

Section 7.4, I found instead that variability on the transition parameter λ would lead once again
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to a wait-and-see approach to stabilize the level of inflation optimally. This difference in results

may lie in the fact that the central bank modeled in the present research only stabilize the one-

period deviations of inflation. The central bank would not want to adopt an aggressive approach

that could cause significant deviations in inflation contemporaneously in order to stabilize future

inflation. In the current model structure with a single-period loss function, the central bank does

not consider subsequent periods. It would instead prioritize the use of a cautious approach when

facing variability in the key parameters.

In addition, the essay included various extensions of the initial model to test whether the cen-

tral bank could still learn the parameter values in multiple environments and stabilize inflation. It

showed that the central bank was still able to determine the parameter values with the addition

of an intercept value α to the Phillips Curve equation. The monetary authority was also able to

mitigate fluctuations in the inflation rate while estimating the value of the slowly-evolving param-

eter ϕt with a rolling window algorithm. Furthermore, the addition of an IS curve, variability in

the inflation persistence coefficient λ and the inclusion of an interest-rate smoothing parameter in

the central bank’s loss function did not alter the main findings of parameter learnability. Also,

I showed that the use of a Kalman filter structure yields the same results as the RLS algorithm,

which was used in the essay to model the learning process performed by the central bank.

Interesting extensions to the present essay concerns both statistical learning and economic

structure. It is well known that the estimated autoregressive coefficients can be biased downward

under the RLS algorithm in finite samples. See for examples Kendall (1954), Hurwicz (1950) and

Hamilton (1994), among others. In the essay, the autoregressive structure of inflation is defined by

the parameter λ. In the present case, it would cause the estimated ratio λ/ϕ to be biased downward

and could serve as an explanation of why the estimates would converge from below the mean true

value in most instances. It might be interesting to consider alternate estimators when performing

the estimations.
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Further analyses could be considered to enrich the economic model structure presented in this

essay. A similar learning exercise could be implemented with the inclusion of a law of motion for

the output gap variable yt. As defined in Section 7.3, the model could include a persistence factor

in the output gap variable. Moreover, the central bank could depart from a strict inflation-targeting

regime and incorporate multiple objectives in its loss function. The model structure would then

closely correspond to the structure of a formal Taylor Rule defined in Taylor (1993), where the

central bank has to limit variations of inflation and in the output gap from their respective equi-

librium levels. It would also be possible to study the learnability with a hybrid New-Keynesian

Phillips Curve, as defined in Mavroeidis et al. (2014) illustrating an extension to the law of motion

of the inflation rate presented in this essay. The realizations of inflation could be determined by a

forward-looking component accounting for the expectation of agents regarding future realizations

of the inflation rate in the economy. The central bank would have to forecast future values of the

parameters in the PC equation when setting its policy interest rate. Its optimal behavior under

parameter variability could be different from the results found in the present essay. As seen in

Ferrero et al. (2019), policymakers could choose to deploy an aggressive strategy contemporane-

ously to mitigate present deviations of the inflation from its target. By doing so, it would prevent

the potential unanchoring of inflation expectations and avert a potential inflationary spiral caused

by the amplification of the effects of exogenous shocks on the inflation rate over time. Studying a

forward-looking price setting and a multi-period loss function as used in Beck and Wieland (2002)

and Kimura and Kurozumi (2007), would, however, require more advanced solution methods.
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A Appendix A: Realizations of the Variance of Inflation

One can compute a measure of the variance in inflation to capture how effectively central banks

are able to stabilize inflation to their respective targets. The variance measures were computed over

the 1000 simulations of a given Monte-Carlo sample. Then, the median, the 25th percentile, and

75th percentile measures were calculated over the 99 variances of the inflation rate in the sample.

A comparison of the values in the table should be made cautiously. Scenarios 3, 4, and 5 can be

compared together since they formalize the initial cases where the endogenous response and the

variability in the parameter ϕt are progressively added to the model structure. The other values

found in scenarios 7.1 to 7.5 can be compared to the dispersion measures found in scenario 5

since the standard deviations of the exogenous shocks εt and νt are set constant to 0.01 and remain

consistent for all subsequent estimations.

Table 1: Median Realizations of the Variance of Inflation

Scenarios Median 25th
percentile

75th
percentile

3. Benchmark Example 0.0157 0.0147 0.0165

4. Feedback Interest Rate Rule 0.0040 0.0039 0.0042

5. Parameter Variability ϕt 0.0041 0.0039 0.0043

7.1. Intercept αt 0.1512 0.0154 0.1666

7.2.a Persistent Parameter ϕt - Rolling Window 0.0044 0.0042 0.0047

7.2.b Persistent Parameter ϕt - Expanding Window 0.0044 0.0040 0.0047

7.4.a Parameter Variability λt 0.0041 0.0039 0.0043

7.4.b Parameter Variability λt and νt 0.0043 0.0040 0.0045

7.5. Interest Rate Smoothing 0.4122 0.3378 0.5109
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B Appendix B: Learning Accuracy

In an effort to quantify the degree of convergence of the various simulations and their respective

extensions, it is possible to calculate the squared difference between the estimates and the actual

value of the ratio λ/ϕ at a given observation. Then, one can take the sum of every squared difference

for the 1000 observations of the algorithm. Subsequently, it is possible to derive the median, the

25th percentile, and 75th percentile measures of the 99 Monte-Carlo sums of differences as a

comparison criterion. The measure of convergence can be summarized in the following form:

Differencet =

1000∑
t=1

[
λ̂t

ϕ̂t
−
λ

ϕ̄

]2

. (51)

The disclaimer regarding the comparison of dispersion measures between scenarios issued for Ta-

ble 1 of Appendix A also applies here.

Table 2: Median Deviations of the Estimates from the Actual Ratio λ/ϕ

Scenarios Median 25th
percentile

75th
percentile

3. Benchmark Example 34.1309 16.0920 70.2331

4. Feedback Interest Rate Rule 4.0808 1.9731 8.4163

5. Parameter Variability ϕt 828.6741 199.1454 2050.5706

7.1. Intercept αt 644.3159 325.8248 1502.5398

7.2.a Persistent Parameter ϕt - Rolling Window 3724.0770 2811.9769 4854.5474

7.2.b Persistent Parameter ϕt - Expanding Window 1355.6659 370.2488 4474.6513

7.4.a Parameter Variability λt 7.2397 3.0923 22.0720

7.4.b Parameter Variability λt and νt 746.4991 187.4913 2025.9888
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C Appendix C: Simulation Procedure

Simulations were performed following the detailed sequences of events illustrated in the Model

Environment and Introductory Benchmark section. The various simulations were estimated with a

recursive least squares (RLS) method while varying the standard deviations of the cost-push shock

σε and the interest rate shock σν to incorporate progressively parameter variability in the model

structure. The standard deviations of the exogenous shocks varied in an increasing fashion from 0

to 0.01, 0.02, and 0.05. to assess the impact of including increasing parameter variability on the

impact coefficient ϕt and having more sizeable volatility of the cost-push shock εt in the Phillips

curve equation. For the Benchmark Example, the standard deviation of the interest rate shock νt

is initially set to be equal to 0. The central bank can, therefore, estimate the parameters without

considering any potential parameter variability endowed in the equations of the model.

The interest-rate decision equation defined in equation (2) includes an autoregressive process

of order one. The coefficient ρ is set to an arbitrary value of 0.7 to induce sufficient persistence in

the interest rate variable Rt. In addition, the mean value of the λt parameter is set to be constant at

a value of 0.55. The value was estimated using an Ordinary Least Squares regression of the U.S.

inflation rate computed as variations in the Consumer Price Index (CPI) (CPIAUCSL). To mimic

the structure of the Phillips Curve equation defined in equation (1), the inflation rate was regressed

on its lag component of order one and on the Fed Funds interest rate (FEDFUNDS), which cor-

responds to the policy interest rate variable Rt. The sample contained quarterly observations from

1954q3 to 2020q1. The data originates from the U.S. Congressional Budget Office obtained on the

Federal Reserve Economic Database (FRED).

The parameter value of the interest-rate decision coefficient ϕt was also estimated from the

empirical exercise mentioned previously. Its equilibrium value was estimated to be equal to 0.05.

With the inclusion of a negative sign in front of the parameter ϕt in equation (1), one can see that

increases in the policy interest rates have historically weakened inflation readings. The initial mag-
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nitudes of πt and Rt were set to be equal to 2 and 1, respectively. The initial value of the inflation

variable πt was chosen to correspond to the current inflation target by the Bank of Canada and the

U.S. Federal Reserve. The starting value of the interest rate was selected to be positive to avoid

potential realizations of the interest rate falling below the zero lower bound with the introduction

of parameter variability later on. A negative reading of the interest rate would lead to a counter-

intuitive positive relationship between increases in the policy rate Rt and the inflation rate πt.

In the simulation exercises, the Recursive Least Squares (RLS) regressions were computed

analytically as follows:

πt = β1Rt + β2πt−1 + εt (52)

πt = −ϕRt + λπt−1 + εt. (53)

The regression estimation procedure helps to find linear estimates of β1 and β2, defined as β̂1 and β̂2

respectively. It is then possible to translate the OLS estimates to their respective coefficients in the

structure of the PC equation (53). The coefficient β̂2 translates directly to the λ̂ coefficient, which

measures the persistence of inflation. One can then add a minus sign to the estimates β̂1 in order to

derive the value of the impact parameter ϕt. Subsequently, it is possible to match the structure of

equation (53) computed with the RLS estimates, which model the negative relationship between

the interest rate Rt and the contemporaneous inflation rate πt. The t subscript indicates that interest

rate variable Rt contain information up to the beginning of period t.

In the simulation algorithm, the initial values of πt and Rt were computed over the smallest

sample possible needed to have sufficient degrees of freedom to initiate the iterating process. As

an example, the number of degrees of freedom in the Benchmark Example was set to 3 to estimate

the values of ϕ and λ correctly. Once the first three observations were determined with the recur-

sive algorithm, they were discarded from the sample to reduce the impact of the initial periods on
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the final values of the estimates.

The coefficients defined in equation (52) are then estimated recursively with an RLS algorithm

over an additional 1050 observations. The first 50 observations are then removed from the final

sample to limit the noise embedded in the very first observations as the central bank is trying to

pin down the values of the parameters. In the initial sub-sample, the central bank does not have a

sufficiently large historical sample size to estimate the governing parameters in the inflation rate

equation (1) accurately. The figures presented in this essay only displayed the last 1000 (1053-3-

50) iterations of the recursive algorithm.

The majority of exercises were conducted using an expanding window algorithm as the central

bank uses the entire sample at its disposal to perform estimations of the parameters ϕ and λ. As

detailed in section 7.2, the central bank also conducts the RLS estimations using a rolling win-

dow algorithm with a fixed window size of 50 observations. This algorithm specification would

account for potential breaks in the structure of the economy. The central bank would then prefer to

reduce its estimation sample to discard such likely observations. The algorithms, both expanding

and rolling windows, were subsequently estimated repeatedly over 99 Monte-Carlo iterations to

compute measures of dispersion of the estimated coefficients.
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