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1. Introduction

A fundamental question in social science is how to describe the behavior of a population of
decision makers (DMs). This question is tightly related to identifying the distribution of preferences
that generates behavior. The random utility model (RUM) (McFadden and Richter (1990)) is
the standard tool to describe behavior and to identify preferences.1 RUM assumes that DMs
maximize their preferences over their choice set. However, RUM may fail at describing behavior
and identifying preferences if DMs do not consider all available alternatives when choice is hard.
We say choice is hard when there is a cost to understanding the decision task. In this situation,
DMs may use two-stage procedures: first simplifying choice by using a consideration set, and only
then choosing the best alternative among those considered. Thus, DMs may choose dominated
alternatives when facing a cost of consideration.2 A large literature, pioneered by Masatlioglu et al.
(2012) and Manzini and Mariotti (2014) has proposed theories of consideration-mediated choice.
These theories accommodate departures from RUM caused by inattention, feasibility, categorization,
and search.3 In contrast to RUM,4 little is known about the empirical validity of these models and
their ability to identify the distribution of preferences. By focusing on the inattention channel, our
work aims to fill this important gap in the literature.

Methodologically, we extend several theories of consideration-mediated choice to allow for
preference heterogeneity. This allows us to take these theories of individual behavior to the
population level, thus permitting the use of cross-sectional datasets to test them. Following
McFadden and Richter (1990) and Kitamura and Stoye (2018), we take seriously the fact that all
theories of stochastic choice have as their primitive the unobserved distribution over choices that
can only be estimated in finite samples by sample frequencies of choice. Thus, in order to test these
models in finite samples, we need to account for sampling variability. We show how to test these
theories statistically, and how to recover the preference distribution and consideration rules.

Empirically, we design a novel experiment with two independent sources of exogenous variation:
(i) full variation in choice sets (menus), and (ii) three levels of consideration cost. Full variation
in choice sets means that all possible choice sets are observed by the researcher. Full variation in
choice sets allows us to test consideration-mediated choice theories, and to identify preferences in a
large cross-section of heterogeneous individuals. Variation in the consideration cost allows us to

1RUM was first proposed by Block and Marschak (1960) and Falmagne (1978) in an environment similar to ours.
2Ho et al. (2017) and Heiss et al. (2016) show the effect of limited consideration in the health insurance market

and its effects in overspending. Hortaçsu et al. (2017) shows that for the residential electricity market in Texas,
low-cost information interventions could increase consumer surplus by $100 or more per year. Honka (2014) and
Honka et al. (2017) examine the effects of limited consideration in the US auto insurance and banking industries,
respectively. De Los Santos et al. (2012) uses data on web browsing to show that consumers consider a relatively
small number of websites when shopping online. Barseghyan et al. (2018) uses administrative data on insurance
purchases to show that DMs choose dominated options due to limited consideration, in an environment without
menu variation.

3See, for instance, Aguiar et al. (2016), Brady and Rehbeck (2016), Caplin et al. (2016), Aguiar (2017), Kovach
and Ulku (2017), Lleras et al. (2017), Cattaneo et al. (2017), and Horan (2018).

4For evidence from the field for RUM using surveys, see Kitamura and Stoye (2018). For experimental evidence,
see McCausland et al. (2018).
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study the relevance of different consideration set models. We also introduce a dominated default
alternative that works like an opportunity cost of paying attention. We conducted this experiment
online in Amazon Mechanical Turk (MTurk), collecting 12297 independent choice observations from
2135 individuals. To the best of our knowledge, this is the largest experiment to date that permits
the testing of RUM and its limited consideration extensions.5 We reject the null hypothesis of the
validity of RUM and fail to reject the hypothesis that DMs have limited consideration.

We model behavior as if individuals may not consider all alternatives in a given choice set.
DMs first pick a subset of alternatives, which we refer to as their consideration set. Choices
are then given by the best alternative (as determined by the DMs’ preferences) among the ones
considered. Thus, the choices observed are the result of a combination of the unobserved preferences
and the consideration set rules. Since unobserved preferences and consideration sets may vary
across individuals, it is difficult to test consideration-mediated choice theories. We show that
full variation in choice sets, and the presence of a default alternative, are sufficient to uniquely
recover distribution over consideration sets given a particular consideration set rule. Moreover,
recoverability of preferences under limited consideration is as good as in RUM if, in addition to full
variation in choice sets, there is a positive mass of DMs who consider the full choice set.6

Once the underlying preference distribution is identified, we can construct the hypothetical
distribution over choices generated by the identified preference distribution under full consideration.
We show that, at the population level, testing a consideration-mediated choice theory with hetero-
geneous preferences is equivalent to testing whether this hypothetical full-consideration distribution
over choices is consistent with RUM. We therefore use this result to test these models using the
framework of Kitamura and Stoye (2018).

In order to exploit all possible implications of the limited-consideration models of interest we
need full variation in choice sets. A limited consideration model may describe behavior well for a
nonexhaustive dataset, but it may fail to do so for an extended dataset. That is, one may have
false positives when observing choices from a nonexhaustive set of menus, as discussed at length in
De Clippel and Rozen (2018). Nonetheless, full exogenous variation in choice sets is an important
data feature that is usually not satisfied in field data. In fact, one must observe, at least some
individuals facing each possible choice set.

Additionally, Kitamura and Stoye (2018) argue that lack of exogenous variation in choice sets
invalidates the standard RUM framework provided by McFadden and Richter (1990). In field
studies the choice set variation may not be exogenous because the constraints that a DM faces may
be correlated with her preferences.

Exogenous variation in the consideration cost allows us to study conditions under which different
5The only other experiments that we are aware of that have collected stochastic choice data focusing on choice

set variation are Apesteguia et al. (2018) (87 individuals) and McCausland et al. (2018) (141 participants). Both
focus mainly on binary choice sets that are not sufficient for our goals, nor do they test limited consideration. In
addition, we focus on statistical testing instead of goodness-of-fit measures or the computation of Bayes factors (the
two approaches they use).

6Cattaneo et al. (2017) shows that many random consideration rules are equivalent to heterogeneity in deterministic
attention filters (Masatlioglu et al. (2012)). In this sense, at the population level, we allow heterogeneity in both
preferences and in consideration.
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consideration models provide a better description of the behavior of the population. We introduce
three cost treatments for every choice set. Each DM faces all three costs. These treatments require
the DM to solve a simple cognitive task to understand the alternatives. The consideration cost
is progressively reduced while we keep the choice set fixed.7 Within this design we are able to
understand how changing consideration costs may affect choices while we keep (the distribution of)
preferences fixed.

We use these theoretical and experimental innovations to test (i) the choice-set independent-
consideration model of Manzini and Mariotti (2014) (MM), (ii) the logit attention model of Brady
and Rehbeck (2016) (LA), and (iii) the random categorization model of Aguiar (2017) (RCG).8

First, we test these models and the benchmark RUM with and without conditioning on the cost
level. Later we require the underlying preference relation to be stable among cost treatments
while allowing the consideration rules to vary with the cost. Our main findings are: (i) We reject
the hypothesis that RUM provides a good description of population behavior, when we pool
observations across consideration costs. In contrast, the LA model with heterogeneous preferences
cannot be rejected at the 95 percent confidence level. (ii) RUM provides a good description of
behavior for high and low consideration costs while failing for the case of intermediate cost. LA
with heterogeneity also provides a good description of the behavior of the population across all
consideration cost levels. (iii) Perhaps surprisingly, the highly stylized MM model with preference
heterogeneity cannot be rejected as a good description of the data in the high-cost treatment (it is
rejected at the medium and low costs). The same is true for RCG (which nests MM).9

By varying consideration costs while fixing the choice sets faced by DMs, our experimental
design facilitates detecting failures of a given model at the task of identifying stable preferences
that are independent of the way alternatives are presented. Across our three cost treatments, the
choice set remains the same. Under our incentives protocol (pay-at-random across tasks), the
distribution of preferences must remain constant regardless of the consideration cost. By exploiting
this feature of our design, we show that, in our sample, RUM fails in its identification task even
when it describes behavior well. We provide evidence that population behavior is different between
the high and low consideration cost treatments. This implies that we reject the null hypothesis
that the same distribution of preferences, under RUM, governs the choice of the population in the
different cost treatments. In sharp contrast, we fail to reject the null hypothesis that the underlying
distribution of preferences is the same across cost treatments for LA.

Our work contributes to the recent experimental literature on stochastic choice, limited consid-
eration, and departures from stochastic rationality (RUM).10 Two important empirical anomalies
contradict RUM: the attraction effect and choice overload. We are interested in whether these
effects, which may be present at the individual level, still matter at the population level. The

7The fact that the choice remains the same is not explicitly stated in the experiment instructions.
8Our methodology can be applied to other stochastic consideration rules but we focus our attention on these

models. See Cattaneo et al. (2017) for a useful survey of many consideration set rules.
9This suggest that fast and frugal consideration rules such as categorization or independent consideration may

work well at high costs of consideration.
10There is a vast literature documenting departures from fully rational behavior. Rieskamp et al. (2006) reviews

many of these violations and the theories that have been proposed to rationalize them.
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attraction effect refers to the case in which, as a new alternative is added to the choice set, the
probability of some of the existing items is boosted. The attraction effect cannot be rationalized
by RUM. In contrast, the LA model can explain it. The presence of the attraction effect in our
sample allows us to differentiate between these two models. We find evidence for the attraction
effect only for the intermediate consideration cost; for this consideration cost RUM fails but, at the
95 percent confidence level, we cannot reject LA.

Choice overload refers to the case in which the propensity of not choosing (or the probability
of picking a default alternative) increases in larger choice sets. Neither RUM nor any model of
limited consideration that we studied can rationalize choice overload.11 Limited consideration
is fundamentally at odds with choice overload since one of the important reasons to form a
consideration set is to simplify choice. In fact, not even the most general model of random
consideration, which so far, is the Random Attention Model (RAM) by Cattaneo et al. (2017),
can explain choice overload.12 We find no statistical support for choice overload. In sum, we
find experimental evidence that random consideration with heterogeneous preferences can explain
behavior when choice is hard, while random utility cannot.

This paper generalizes the methodology of Cattaneo et al. (2017) by allowing heterogeneity in
preferences, when the choice sets include a default alternative. Cattaneo et al. (2017) provides a
general framework to test different models of stochastic consideration when preferences are fixed
(with and without a default). Therefore, their work is better suited for individual stochastic choice
data.13 Our contribution is designed to work at the (large) cross-section level where each individual,
in principle, can face only one choice set. Moreover, our dataset allows us to do asymptotic inference
accounting for sampling variability. In sharp contrast with the RAM framework, we show that
identification of preferences is possible when choice is regular. We show that the default alternative
is key in achieving point identification of the stochastic consideration rule, even under heterogeneity
in preferences.

We also contribute to the empirical literature focused on identifying the distribution of preferences
in the presence of limited consideration. With limited consideration, RUM fails at identifying
preferences. Moreover, we show that, even under preference homogeneity, the approach of Cattaneo
et al. (2017) may fail at the identification task. We achieve exact identification of the distribution
of consideration rules and the same level of preference identification as does RUM. We do this
by introducing a default alternative that has, plausibly, zero consideration cost and that captures
the opportunity cost of considering any item in a choice set. Our approach differs from previous
efforts that have used enhanced datasets to test for the presence of consideration in that we use
only a standard stochastic choice dataset widely used in the discrete-choice literature. For example,

11Chernev et al. (2015) provides a meta-data analysis of the determinants of choice overload, reviewing previous
literature on this subject. In this context, the presence of a large choice set of difficult complexity can increase the
likelihood of both effects.

12 Other models of stochastic choice that are not models of limited consideration usually can accommodate choice
overload. See: Fudenberg et al. (2015), Echenique et al. (2018), Kovach and Tserenjigmid (2018), and Natenzon
(2018).

13To the best of our knowledge, Allen and Rehbeck (2018) is the only other paper that proposes a (nonstatistical)
test of stochastic choice from a nonparametric revealed-preferences perspective. Another way in which our approach
differs from theirs is that they focus on the case of stochastic choice with attributes.
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employing eye-tracking data to identify attention, Reutskaja et al. (2011) provides evidence of
search and satisficing.14 Goeree (2008) and Van Nierop et al. (2010) approach the identification
task by assuming that advertisements affect the formation of a consideration set, but not consumer
preference.15 Recently, Abaluck and Adams (2017) use structural restrictions on the elasticity
behavior of demand to identify consideration sets and preferences. They implement an experiment
in which they validate their model with choice set variation. (However, they deliberately ignore
this information and instead try to recover it using their methodology). We differ from that work
because we are focused on a large population (whereas their sample consists of only 150 subjects)
(allowing us to do statistical inference) and we do not observe attributes (e.g., prices).

Finally, we estimate the distribution of preferences and consideration sets in our dataset,
assuming that (i) the consideration rule is LA (logit attention), and (ii) preferences satisfy the
expected utility restrictions (the independence axiom) and exhibit constant relative risk aversion
(CRRA). We are able to do this because, when we use our testing procedure, we cannot reject these
restrictions. We also cannot reject the fact that preferences are stable across consideration cost
treatments while consideration is not. Imposing the CRRA restriction on preferences allows us to
uniquely recover the distribution of preference types in our population (Apesteguia et al. (2017)).

We find that the higher the consideration cost, the higher the proportion of individuals who
suboptimize. Our results indicate that when the consideration cost is high, 24.07 percent of the
population may be suboptimal because of lack of full consideration. The fractions of suboptimizing
individuals for the medium and low costs are 17.34 percent and 3.76 percent, respectively. These
findings reveal substantial welfare implications of hard choices. Our estimates of the distribution of
preferences imply that there are two major preference types in our population if we condition on
the recovered stochastic consideration rule. This finding supports the presence of heterogeneity
in preferences. In addition, we cannot reject the possibility that individuals in our sample are
risk-averse expected utility maximizers conditional on limited consideration; if this were true, then
that would support the model by Gul et al. (2014), as long as that model is augmented with limited
consideration.16

Outline

The paper proceeds as follows. Section 2 presents our model which extends theories of considera-
tion sets while allowing for preference heterogeneity. This section characterizes the restrictions under

14Other authors such as Honka et al. (2017), and Draganska and Klapper (2011) use additional surveys to
identify limited consideration. In order to identify consideration set models Kawaguchi et al. (2016), and Conlon
and Mortimer (2013) exploit variation in product availability, while Dehmamy and Otter (2014) and Huang and
Bronnenberg (2018) exploit variations in quantity purchased and products purchased. Gabaix et al. (2006) exploits
mouse-tracking data to identify the pieces of information or attributes that a DM considers that will make her
consider a particular alternative.

15Roberts and Lattin (1997) and Van Nierop et al. (2010) provide summaries of the marketing literature on
consideration set models.

16This observation supports the findings in List and Haigh (2005) that violations of expected utility are less
prevalent at the population level.
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each theory considered and describes our testing procedure. Section 3 details our experimental
design that exogenously varies choice sets and consideration cost, thereby allowing us to identify
limited consideration in the sample. We describe the observed pattern of choices and discuss
whether there is evidence of departures from rational behavior. Section 4 presents the testing
results for the heterogeneous random-consideration theories in our sample and discusses their
implications. Section 5 presents the structural estimation of the random consideration rules as well
as the distribution of preferences and the main implications of hard choice for welfare. Finally,
Section 6 concludes.

2. Environment – Model

We consider a finite choice set X and we denote the outside alternative or default as o /∈ X.
We let the set of all possible choice sets be A = {A ∈ 2X \ {∅}}, where 2X denotes the set of all
subsets of X. A probabilistic choice rule is a mapping p : X ∪ {o} × A 7→ [0, 1]. The probabilistic
choice rules for a given choice set add up to 1, ∑a∈A p(a,A) + p(o, A) = 1. Moreover, p(a,A) = 0 if
a /∈ A. We fix p(o, ∅) = 1. A complete stochastic choice rule is a vector P = (p(a,A))A∈A,a∈A∪{o}.

2.1. Random Consideration Sets and Preference Heterogeneity

We consider an environment where decision makers (DMs), faced with a choice set A ∈ A,
first pick D ⊆ A (consideration set) and then choose the alternative in D that maximizes their
preferences. With probability π(�) DMs are endowed with preferences �∈ X ×X, drawn from
R(X) the set of all strict linear orders on X. The probability measure π, which is an element of the
simplex on R(X) denoted by ∆(R(X)), fully captures preference heterogeneity. The distribution
over random consideration sets is fully characterized by the probability measure mA : 2A → [0, 1],∑
D⊆AmA(D) = 1. In other words, mA is an element of the simplex on 2A, which we denote by

∆(2A) for every A ∈ A. Let m denote the complete collection of those probability measures. That
is, m = (mA(D))A∈A,D∈2A . Formally,

Definition 1. (Heterogeneous Preferences Random Consideration Set Rule, HRC-rule) A complete
stochastic choice rule P is a HRC-rule if there exists a pair (m,π) such that

p(a,A) =
∑

�∈R(X)
π(�)

∑
D⊆A

mA(D)1 ( a � b, ∀ b ∈ D ) ,

for all a ∈ X and A ∈ A, where 1 ( · ) denotes the indicator function.17

171 (B ) is equal to 1 if the statement B is true, otherwise it is equal to zero.
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A

A : Choice Set

D

D : Consideration Set

mA(·) π(·)

Preferences:
�∈ R(X)

Consideration Sets:
D ∈ 2A

ai,A : �-maximal in D

ai,A : Choice

Figure 1 – Consideration mediated choices Choices are the result of a two stage process, first pick
a consideration set and then pick the best alternative in that set. We observe choices (ai)
and menus (A). We do not observe and we aim to identify the theory objects: distribution
of preferences in the population (π) and stochastic choice rule (mA).

This choice rule is illustrated in Figure 1. We can specialize the HRC-rule for different restrictions
on the heterogeneity of preferences by replacing the set of all linear orders R(X) in Definition 1 by
Rc(X) ⊆ R(X) that satisfies property c.18

Definition 1 implicitly assumes that the random consideration set rule and the heterogeneous
preferences are independent. Independence is a very natural restriction in this environment as we
want to achieve a decomposition of any observed probabilistic choice rule into its consideration
(captured by m) and preference (captured by π) components. Also, we are interested in modelling
decision making in two-stages where DMs simplify a hard choice task by means of fast-and-frugal
heuristics (consideration) that are independent from preferences, and then choose rationally from
the simplified choice set. Moreover, as the following lemma demonstrates, the HRC-rule does
not have empirical content even under the independence assumption. This means that assuming
independence between preferences and consideration rules, at this stage, can be done without loss
of generality.

Lemma 1. Every complete stochastic choice rule P is a HRC-rule.

Without additional restriction on π and m the model is not falsifiable. We will impose
constraints on m that will allow us to test several important random consideration sets models
without restricting heterogeneity in preferences. In particular, we consider the full attention model
(FC), the logit attention model (LA) of Brady and Rehbeck (2016), the choice set independent
attention model (MM) of Manzini and Mariotti (2014), and the random categorization model
(RCG) of Aguiar (2017).

18In what follows, we will allow for several restrictions on c: (i) linear orders must satisfy the independence axiom
over lotteries. We call this restriction Expected Utility (EU) (c = EU). For short the notation for these restricted
models is c-L-HRC. (ii) We fix a single linear order or homogeneous preferences (c = HM). The EU restricted set of
preference orders REU(X) only contains linear orders that can be represented by an expected utility, namely there
exists a collection {uz}z∈Z , which represents utilities over the set of prizes Z, such that each lottery l ∈ ∆(Z) has a
utility EU(l) =

∑
z∈Z l(z)uz. See Appendix B.
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Definition 2. The logit attention (LA), the choice set independent (MM), the random consideration
(RCG), and the full consideration (FC) models are the sets of complete collection of random
consideration set probability measuresML, L ∈ {LA,MM,RCG,FC}, such that

• m ∈MLA if and only if there exists η ∈ ∆(2X) such that

mA(D) = η(D)∑
C⊆A η(C) > 0,

for all A ∈ A and D ∈ 2A;

• m ∈MMM if and only if m ∈MLA with

η(A) =
∏

a∈X\A
(1− γ(a))

∏
b∈A

γ(b),

for a given γ : X → (0, 1) and for all A ∈ 2X ;

• m ∈MRCG if and only if there exists η ∈ ∆(2X) such that

mA(D) =
∑

C:C∩A=D
η(C),

for all A ∈ A and D ∈ 2A;

• m ∈MFC if and only if
mA(A) = 1,

for all A ∈ A.

We work with these models since they allow us to learn about the true data generating process
in a systematic way. In particular, the well-known MM-rule is exactly the intersection of the LA
and RCG models (Suleymanov (2018)). Thus, LA and RCG are completely distinct generalizations
of MM. In that sense, rejecting or accepting either of these models is very informative.

Given the above models we can define a restricted version of the HRC-rule (L-HRC-rule).

Definition 3. (L-HRC-rule) For a given L ∈ {LA,MM,RCG,FC}, a complete stochastic choice
rule P is L-HRC-rule if P is a HRC-rule with m ∈ML.

Definition 3 summarizes four different models of consideration sets and can be extended to any
model that is defined via the distribution over considerations sets.

In our framework, the randomness due to limited consideration can arise for two possible reasons:
(i) consideration is deterministic at the individual level but heterogeneous at the population level;
and (ii) consideration is random at the individual level and independent and identically distributed
(i.i.d.) at the population level. The next example shows how a population of individuals that
are heterogeneous in terms of their (deterministic) limited consideration can be described by a
L-HRC-rule.
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RUM

MM

RCG

LA

Figure 2 – Relation among Consideration Set Rules: RUM, LA, MM, and RCG

Example 1. Consider a population of DMs with two types of agents endowed with different
deterministic attention rules. Assume that half of the DMs are fully attentive, while the other half
follows a rule of thumb: they pay full attention to option b if it is present in a given choice set, else
the consideration set is empty. The DMs pick the best alternative, according to the (heterogeneous)
preference realization governed by some π ∈ ∆(R(X)). If the consideration set is empty, then
the outside option is selected. This population has heterogeneous (deterministic) consideration
that can be fully captured by a random consideration rule with the RCG restriction. Namely, let
η(X) = 1

2 and η({b}) = 1
2 . Then the RCG-HRC-rule can describe this population behavior.19

At this point, it is useful to formally define the Random Utility Model (RUM) over the whole
choice set X ∪ {o}. RUM treats the default alternative as just another item with no special status.
This is just the standard model by McFadden and Richter (1990). Let R(X ∪ {o}) be a set of
linear orders over the extended choice set X ∪ {o}. Also, let πo ∈ ∆(R(X ∪ {o}) be a probability
measure over R(X ∪ {o}).

Definition 4. (Random Utility Model, RUM) A complete stochastic choice rule P is consistent
with random utility if there exists a πo ∈ ∆(R(X ∪ {o})) such that

p(a,A) =
∑

�∈R(X∪{o})
πo(�)1 ( a � b,∀b ∈ A ) ,

for all a ∈ A and A ∈ A.

The relationship between the models in Definition 2 and RUM are summarized in Figure 2.
LA is not nested by nor nests RUM. For example, LA allows for attraction effect which violates
regularity and therefore is inconsistent with RUM. Also, their intersection is nonempty because
MM is both consistent with RUM and LA, as discussed by Manzini and Mariotti (2014) and Brady
and Rehbeck (2016), respectively. Moreover, RCG is nested in RUM and nests MM, therefore its
intersection with LA is nonempty (Aguiar (2017)). Suleymanov (2018) shows that MM exactly

19Cattaneo et al. (2017) shows that RAM, which is a generalization of MM, RCG, and LA, can be thought as
a model of heterogeneous (but deterministic) consideration when deterministic consideration corresponds to an
attention filter as in Masatlioglu et al. (2012).
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Table 1 – Behavior that cannot be rationalized by LA, RCG, MM and RUM

Allows for: RUM MM LA RCG

Attraction Effect 7 7 X 7

Choice overload 7 7 7 7

describes the intersection between LA and RCG.20 Table 1 summarizes some well documented
features of stochastic choice and whether the consideration rules in Definition 2 can rationalize
them.21

In the framework of the HRC model, limited consideration is accounted for in a reduced form.
That is, we are agnostic about the source of limited consideration but instead we assume there
is a distribution over consideration sets (mA(D))A∈A,D∈2A that is independent of preferences. In
Appendix C.5 we show how LA and RCG consideration rules can be rationalized by a DM that
seeks to optimize attention allocation when attention is costly (in a framework similar to Fudenberg
et al. (2015)).

2.2. Characterization of the L-HRC-model

Given the restrictions that are imposed by different consideration rules the natural question is
when can we recover them from the data. First, we construct an object, mL, that is a distribution
over consideration sets under correct specification of the model. Let |A| denote the cardinality of A.

Definition 5. For given L ∈ {LA,MM,RCG,FC} and P , let mL = (mL
A(D))A∈A,D∈2A , where

mL
A : 2A → R is such that, for all A ∈ A and D ∈ 2A,

• mLA
A (D) = ηLA(D)∑

C⊆A η
LA(C) , where η

LA(D) = ∑
B⊆D(−1)|D\B| p(o,X)

p(o,B) ;

• mMM
A (D) = ηMM(D)∑

C⊆A η
MM(C) , where η

MM(D) = ∏
a∈X\D

(
1− γMM(a)

)∏
b∈D γ

MM(b), and γMM :

X → R such that γMM(a) = 1− p(o,A)
p(o,A\{a}) for some A ∈ A that contains a;

• mRCG
A (D) = ∑

C:C∩A=D η
RCG(C), where ηRCG(D) = ∑

A⊆D:D∈A(−1)|D\A|(p(o,X \ A));

• mFC
A (D) = 1 (A = D ).

20All these relationships are preserved when allowing for heterogeneous preferences under the independence
assumption of preferences and attention. The reason is that the outside probability does not depend on the
distribution of preferences.

21For more details on the comparison among stochastic consideration set models, some other models in the
literature, and their empirical implications see Appendix C.
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In general, mL may not be a distribution (some components may be negative or greater than 1)
since mL is calibrated from observed frequencies. Moreover, mLA or mMM may not be well-defined
if probabilities of choosing the outside option for some choice sets are zero. However, if mL exists,
then ∑D⊆Am

L
A(D) = 1 for all A ∈ A. Thus, mL is a collection of distributions over consideration

sets if and only if mL ≥ 0. To be able to estimate mL from the data with probability approaching
1, we need the following definition.

Definition 6. (Well-defined mL) mL is a well-defined collection of distributions over consideration
sets if

• mLA
A (D) > 0 for all D ∈ 2A;

• γMM(a) ∈ (0, 1) for all a ∈ X;

• mRCG
A (D) ≥ 0 for all A ∈ 2A;

• mFC
A (D) = 1 (A = D ).

We are now ready to state our first result.

Theorem 1. For every L ∈ {LA,MM,RCG,FC}, the following are equivalent:

(i) P is a L-HRC-rule;

(ii) mL is a well-defined collection of distributions over consideration sets such that P is a
HRC-rule described by (m,π) with m = mL.

Theorem 1 provides a testable implication of the model. If P is a L-HRC-rule, then mL has to
be well-defined. Theorem 1 implies that in order to test a given model one does not need to consider
all possible distributions over considerations sets. It suffices to check the unique distribution that
is calibrated from observed P according to Definition 5.

Initially we had to find two objects (the distribution over preferences π and the distribution
over consideration sets m) to make the data consistent with the model. Now we just need to find π.
In other words, we achieved dimensionality reduction. Unfortunately, the testing problem is still
not tractable since the set of all possible distributions over preferences ∆(R(X)) is big. To solve
this problem we introduce another fictitious object.

Definition 7. For given L ∈ {LA,MM,RCG,FC} and P , let P L
π = (pL

π(a,A))A∈A,a∈X , where
pL
π : X ×A → R is such that, for all A ∈ A and a ∈ A,

pL
π(a,A) = p(a,A)−∑C⊂Am

L
A(C)pL

π(a, C)
mL
A(A) .

We call P L
π the calibrated full consideration rule.

Similar to mL, P L
π has interpretation when the L-HRC-rule is consistent with the data. Next

theorem provides the last missing step for testing.
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Theorem 2. Suppose that for given L ∈ {LA,MM,RCG,FC} and stochastic choice rule P (i) mL

is well-defined, (ii) mL
A(A) > 0 for all A ∈ A. Then the following are equivalent:

(i) P is a L-HRC-rule;

(ii) P L
π is a FC-HRC-rule.

Note that both mL ≥ 0 and P L
π can be computed from P . Thus, Theorem 2 implies that in

order to test a given model L it is necessary and sufficient to test whether mL is well defined,
and whether calibrated P L

π is a full consideration rule. We do not observe P but can consistently
estimate it by the collection of sample frequencies P̂ . In Section 2.4 we discuss how to test the
L-HRC-rule accounting for sampling variability in P̂ .

2.3. Identification

Assuming independence between the distribution of preferences and the random consideration
set rule, we uniquely identify the consideration set rule from P if it is a L-HRC-rule, for all models
L ∈ {LA,MM,RCG,FC}. Moreover, if there is a positive mass of individuals that consider all
alternatives in the choice set, the recoverability of preferences is as good as in the case of full
consideration. Note that we can write a L-HRC model alternatively as:

p(a,A) =
∑
D⊆A

mA(D)pπ(a,D),

where pπ(a,A) = ∑
�∈R(X) π(�)1 ( a � b, ∀b ∈ A ) is the underlying FC distribution over (non-

default) choices that is weighted by the random consideration rule m to produce the observed
behavior.

Theorem 3 (Identification). Suppose that for given L ∈ {LA,MM,RCG,FC} (i) P is a L-HRC-
rule, and (ii) mL

A(A) > 0 for all A ∈ A. It follows that if P is described by (m,π) and (m′, π′),
then m = m′ and pπ = pπ′.

Appendix C.3 shows that identification of preferences and consideration rules is not a trivial task.
Even for simple datasets where stochastic behavior arises from only one channel (for example limited
consideration), models that only allow for stochastic behavior because of preference heterogeneity
(e.g. RUM), or because of random consideration/attention without additional assumptions (e.g.
RAM) may fail to identify underlying preferences even when they perfectly describe observed choices.
Our framework shows that the recoverability of preferences is as good as the RUM benchmark
in stark contrast with RAM, where identification of preferences for regular random choice is not
possible.

We can add restrictions on the set of linear orders R(X) to uniquely identify the distribution of
preferences. In particular, we can follow Apesteguia et al. (2017) and replace R(X) in Definition 1
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by the set of linear orders that satisfy a single crossing condition.22 In our experiment we consider
lotteries, therefore it is natural to impose restrictions for Expected Utility rationalization. If we
restrict preferences to be governed by a constant absolute risk aversion (CARA) or constant relative
risk aversion (CRRA) Expected Utility model with full heterogeneity in the risk parameter, then
the restricted set of linear orders satisfies single crossing (Apesteguia et al. (2017)). This is an
important special case that we study in Section 5.

2.4. Testing Procedure

Theorem 2 allows us to test whether a given stochastic choice rule P is a L-HRC-rule: it is
necessary and sufficient to test whether mL is well-defined (satisfies a set of linear inequalities) and
P L
π is consistent with full consideration model. Note that the full consideration model is equivalent

to the random utility model without outside option. Testing for RUM is a well-understood problem
and amounts to solving a quadratic optimization with cone constraints (see McFadden and Richter
(1990) and Kitamura and Stoye (2018)). The approach proposed by Kitamura and Stoye (2018)
allow us to test these conditions while accounting by sampling variability induced by using P̂
instead of unknown P .

To introduce the testing procedure we need to define several objects. Note that the calibrated
full consideration rule, P L

π , is a vector of length dp = ∑|X|
k=1 k

(
|X|
k

)
.23 The k-th element of P L

π

corresponds to some pair (a,A) such that a ∈ A ∪ {o}.
Let B be the matrix of the size dp × |X|! such that (k, l) element of it is equal to

Bk,l = 1 ( a ∈ A )1 ( a �l c, ∀ c ∈ A ) ,

where k corresponds to a pair (a,A) such that a ∈ A, and �l is l-th linear order on X. We define
G as the matrix of size (dp + dm)× d, where d = |X|! + dm and dm = ∑

A⊆X 2|A| is the dimension
of mL, such that

G =
 B 0dp×dm

0dm×|X|! Idm

 ,
where 0dp×dm denotes the zero matrix of size dp × dm, and Idm denotes the identity matrix of size
dm × dm. The next result establishes an equivalent characterization of the L-HRC-rule via mL and
P L
π . Let Rd

+ denote component wise nonnegative elements of the d-dimensional Euclidean space Rd.

Theorem 4. The following are equivalent.

(i) P L
π is a FC-HRC-rule and mL is well-defined;

(ii) infv∈Rd+
∥∥∥gL −Gv

∥∥∥ = 0, where gL = (P L′
π ,m

L′)′.
22The single crossing condition is a restriction on the support of (strict) preferences that requires them to be

ordered, such that any pairwise comparison only switches once (Apesteguia et al. (2017)).
23(n

k

)
= n!

k!(n−k)! and n! = 1 · 2 · · · · · n.
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Proof. See McFadden and Richter (1990) and Kitamura and Stoye (2018). �

Theorem 4 implies that we can test the null hypothesis that infv∈Rd+
∥∥∥gL −Gv

∥∥∥ = 0. Fortunately,
this testing problem can be directly cast to the testing problem in Kitamura and Stoye (2018).

Although P is not observed, the realized choice frequencies P̂ are. For every A ∈ A let nA
denote the number of individuals in the sample that faced choice set A, and let ai,A, i = 1, . . . , nA
be the observed choice of individual i from choice set A ∪ {o}. We assume that the researcher
observes a cross-section of observations for every choice set. Then we define the estimated stochastic
choice rule as

P̂ = (p̂(a,A))A∈A,a∈A∪{o}.

with p̂(a,A) = n−1
A

∑nA
i=1 1 ( ai = a ) for any a ∈ A ∪ {o}.

Given the model of interest L and the estimator of P , P̂ , we can compute the estimators of
mL and P L

π , m̂L and P̂ L
π , using Definitions 5 and 7. Given the results of Theorem 4, a natural test

statistic is

Tn = n min
[v−τnι/d]∈Rd+

(ĝL −Gv)′Ω̂−(ĝL −Gv),

where n = ∑
A nA is the sample size; ĝL = (P̂ L

π
′, m̂L′)′; Ω̂− is a generalized inverse of a diagonal

matrix Ω̂ such that the i-th diagonal element Ω̂i,i is a consistent estimator of the asymptotic variance
of the i-th component of ĝL; τn is a tuning parameter; and ι is a vector of ones of dimension d.24

Let ĝL,∗
l , l = 1, . . . , L, be bootstrap replications of ĝL. To compute the critical values of Tn we

follow the bootstrap procedure proposed in Kitamura and Stoye (2018):

(i) Compute η̂τn = Gvτn , where vτn solves

n min
[v−τnι/d]∈Rd+

(ĝL −Gv)′Ω̂−(ĝL −Gv);

(ii) Compute
ĝL,∗
l = ĝL,∗

l − ĝL + η̂τn ,

for every l = 1, . . . , L and Ω∗;

(iii) Compute the bootstrap test statistic

T∗n,l = n min
[v−τnι/d]∈Rd+

(ĝL,∗
l −Gv)′Ω̂∗−(ĝL,∗

l −Gv), l = 1, . . . , L;

(iv) Use the empirical distribution of the bootstrap statistic to compute critical values of Tn.

For a given confidence level α ∈ (0, 1/2), the decision rule for the test is “reject the null hypothesis
of the L-HRC-rule if Tn > ĉ1−α”, where ĉ1−α is an (1− α)-quantile of the empirical distribution of

24In our empirical application we conducted tests for different values of τn (e.g., τn =
√

log(minA nA)
minA nA

following
Kitamura and Stoye (2018), and τn = 0). The results are qualitatively the same.
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the bootstrap statistic. Note that if the hull hypothesis is wrong and the asymptotic variance of ĝL

is bounded from above and is bounded away from zero, then the test statistic diverges to infinity
as the sample size grows. So asymptotically we will reject the wrongly specified null hypothesis
with probability approaching 1.

We would like to conclude this section by observing that we can test the model conditional
on additional observables (e.g., gender, income brackets, and education level). For discrete (or
discretized) covariates one just need to perform the test for a subgroup of population.

3. The Experiment

Our testing approach requires full choice set variation but does not have requirements in terms of
repeated individual choice data. Exploiting this feature, our experiment was designed to study the
performance of different theories of random consideration sets with few observations per individual.
In particular, we conducted the experiment in Amazon MTurk for a large cross-section with at
most two (disjoint) choice sets per individual (see Section 3.1).

All sessions were run between August 25, 2018 and September 17, 2018 on the MTurk platform
with surveys designed in Qualtrics.25 We surveyed 2135 individuals. They were paid on average
$1.09 as a result of $0.25 for participation fee and the outcome of a randomly selected task that
pays a minimum of $0 and a maximum of $2.26 The average duration of the session was 251.68
seconds (slightly over 4 minutes).27 This means that our average payment per hour is roughly $15.

The payment in our experiment is comparable to other well-known experiments conducted in
MTurk. To name a few, Horton et al. (2011) studied behavior in MTurk using games with the
payment range between $0.40 and $1.60. They find that behavior in MTurk is consistent with
behavior in the lab where the stakes of games are ten times bigger. They also estimate the minimum
wage in MTurk as $0.14 per hour. Dean and McNeill (2014) conducted experiments of decision
making. The average payment for completing 15-min long tasks was between $1.35 and $1.55
including the show-up fee of $0.25. Kim (2016) conducted an experiment in MTurk for several
weeks with one 10-min task each week. The average earnings from each week’s task was below
$1.00. Rand et al. (2012) also conducted a public good game with MTurkers and the payment
range was between $0.90 and $1.50 including the show-up fee of $0.50.

25By clicking the link on the MTurk page, subjects were randomly directed to one of the treatments implemented
by Qualtrics. After completing their task, subjects were also asked to complete a short survey regarding their
demographic information. Subjects were not allowed to participate in the experiment more than once. Only subjects
living in USA were recruited.

26All payment were made in USD.
27The average duration of each task is 23 seconds, and it is significantly correlated with the length of the choice

set (correlation=0.1677, p-value< 10−4) and the cost (correlation=0.2581, p-value< 10−4).
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3.1. Experimental Design

The experiment is designed to obtain a dataset with exogenous variations in choice sets and
in the cost of consideration.In addition, our design produces a complete stochastic choice dataset
with full choice set variation. To induce (potentially) preference heterogeneity we consider lottery
alternatives with different expected value and variance. Table 2 shows the alternatives and implied
preference rankings if DMs are expected utility maximizers with CRRA Bernoulli utility function

u(x) =


x1−σ

1−σ , σ 6= 1,
ln(x), σ = 1.

Additional details about implied rankings are presented in Appendix D. The outside option is
dominated for moderate levels of risk aversion (e.g., Holt and Laury (2002)).28

Table 2 – Lotteries measured in tokens, expected values, and variance

Lottery Expectation Variance Preference Rank u(x) = x1−σ

1−σ with σ

-2 0 0.25 0.30 0.50 0.75 1

(1) 1
250 + 1

20 25.000 625.00 1 1 2 5 5 6 6
(2) 1

230 + 1
210 20.000 100.00 5 5 5 2 1 1 1

(3) 1
450 + 1

430 + 1
410 + 1

40 22.500 368.75 3 3 4 4 3 4 4
(4) 1

450 + 1
548 + 3

2014 + 2
50 24.125 511.73 2 2 1 3 4 5 5

(5) 1
548 + 1

430 + 3
2014 + 1

410 + 3
200 21.625 251.11 4 4 3 1 2 3 3

(o) 12 with probability 1 12.000 0.00 6 6 6 6 6 2 2

Let X = {l1, l2, l3, l4, l5} be the set of all nondefault alternatives and let o be the default/outside
option. All choice sets A ∈ A are observed in the sample. The outside option is always present and
is shown first, while the order of other alternatives is randomized.29 Choice sets can be thought as
different treatments. In fact, many of the behavioral implications of stochastic models of choice are
testable in terms of the change in behavior when adding (removing) an alternative from the menu.

Our primitive to test L-HRC is P̂ = (p̂(a,A))a∈A∪{o},A∈A, therefore we proceeded with stratified
sampling, setting the minimal number of observations per choice set to be proportional to its
cardinality, i.e. nA = λ(|A|+ 1) with λ ≥ 30. This design requires a minimum of ∑A∈A |A| = 3330
tasks.

For each menu, the DM faced three consideration cost treatments: High (H), Medium (M),
and Low (L). These costs of treatment were induced by introducing a k-length two digit addi-
tion/subtraction to compute each prize in the lottery. The length k was set equal to 5, 3 and 1,

28We provide evidence that in our experimental sample DMs have risk aversion levels such that the default is
dominated by all other alternatives. Additionally, it can be argued that, without cost of consideration treatments,
the outside alternative is easier to understand than the rest because of its simplicity. Hence, it works as a reference
point (Suleymanov (2018)).

29Without this randomization the order of the choices in menus may have effect on agents decisions.
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for the high, the medium, and the low cost, respectively. The numbers for the cognitive task were
randomly generated. Examples can be seen in Figure 3. The default alternative o was presented as
is, and there was no need to solve an arithmetic problem to understand it across the different levels
of cost.

To prevent possible learning that could attenuate consideration costs, subjects were faced with
disjoint choice sets. That is, subjects were either presented with the full choice set and the outside
option (X ∪ {o}); or a partition of X (presented at random order), i.e. Aj ∪ {o}, Ak ∪ {o} with
Aj ∪ Ak = X and Aj ∩ Ak = ∅. Our experimental design is summarized in Figure 4.30

The default alternative For any choice set/treatment cost the outside option is always present
and shown first. Moreover, it is pre-selected as the default alternative. If the subject decides to
skip the task, she is informed that o will be chosen for her. This design allows us to use o as the
opportunity cost of incurring in the cost of consideration and understanding the other lotteries in
the choice set. We use a degenerate lottery as the default due to its simplicity. In this sense, we
believe the alternative o in our design has effectively zero cost of consideration.31

Structure of the Lotteries. Since alternatives in our experiment are lotteries, a natural theory
to describe behavior under full consideration is expected utility. Here we show the special structure
of our alternatives that allows us to test expected utility (and the independence axiom) as a
restriction on the set of linear orders (i.e, we use Rc(X) with c = EU in Definition 1).

Lotteries are defined on ∆(Z) with Z being the set of prizes. In our experiment Z =
(50, 48, 30, 14, 12, 10, 0).32 Independence implies that, for any a, b, c ∈ ∆(Z), and any α ∈ (0, 1)

a � b ⇐⇒ αa+ (1− α)c � αb+ (1− α)c .

To understand additional restrictions that are imposed by independence note that lotteries in our
experiment can be written as l1 = (1/2, 0, 0, 0, 0, 0, 1/2) and l2 = (0, 0, 1/2, 0, 0, 1/2, 0). By defining
the auxiliary lottery a = (0, 2/5, 0, 3/10, 0, 0, 3/10), the following relations can be established:

l3 = 1
2 l1 + 1

2 l2, l4 = 1
2 l1 + 1

2a, l5 = 1
2 l2 + 1

2a .

This structure restricts the possible orders that are compatible with expected utility: (i) if l1 � l2
then l1 � l3, l3 � l2 and l4 � l5; or (ii) if l2 � l1 then l2 � l3, l3 � l1 and l5 � l4. That is, this
assumption restricts the support for π ∈ ∆(R(X)), therefore reducing the dimension of the testing
problem. As a result, by imposing independence we decrease the set of preferences that can generate
the data.

30 This is done to increase the number of observations given the fixed cost of the participation fee.
31 Furthermore, Suleymanov (2018) shows that the consideration-mediated choice theories that we study can also

be applied in the context of reference points. In that case, the interpretation is slightly different but the structure is
the same where instead of an outside alternative there is a reference point. By design, the outside alternative in our
experiment could be considered as a reference point.

32For L-HRC we do not require preferences to be defined over the outside option, however we also consider RUM
where o is considered as one alternative more and therefore we define Z accordingly.
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(a) High Cost (b) Medium Cost

(c) Low Cost

Figure 3 – Consideration Cost Treatments Different induced costs for Choice set {o, l2, l4}
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DM - MTurk

Stratification

prob(Aj) = qj ∝ (|Aj |+ 1)A2 ∪Aj = X and A2 ∩Aj = ∅
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A1 ∪ {o}

{o, l1}

{o, l1}

{o, l1}

A2 ∪ {o}

{o, l1, l2}

{o, l1, l2}

{o, l1, l2}

A3 ∪ {o}

{o, l1, l2, l3}

{o, l1, l2, l3}

{o, l1, l2, l3}

Aj ∪ {o}

{o, l3, l4, l5}

{o, l3, l4, l5}

{o, l3, l4, l5}

A31 ∪ {o}

{o, l1, l2, l3, l4, l5}

{o, l1, l2, l3, l4, l5}

{o, l1, l2, l3, l4, l5}

(M) f + g + h

(L) k

Figure 4 – Experimental Design: DM i draws with probability p(Aj) menu Aj with |Aj | ∈ {3, 4, 5}.
In the picture, Aj = {l3, l4, l5}. Therefore she is asked to choose from menus Aj ∪ {o} and
A2 ∪ {o}, since A2 ∪Aj = X and A2 ∩Aj = ∅. She is faced with one of these menus first
(randomly selected) and asked to choose when the cost is H, M and L. Then, she faced the
other menu for the three cost treatments.

However, the previous restrictions are only implications of the expected utility assumption. The
necessary and sufficient condition is the existence of a Bernoulli utility vector u = (uz)z∈Z ∈ R|Z|

that represents the preferences over the restriction �∈ REU(X) (i.e., l1 � l2 ⇐⇒
∑
z∈Z l1,zuz >∑

z∈Z l2,zuz). The necessary and sufficient conditions for deciding whether a linear order is compatible
with EU (i.e., it can be extended to the simplex ∆(Z) as an expected utility order) with a finite set
of prizes and lotteries are provided (as a linear programming problem) in Appendix B. Therefore,
imposing the necessary and sufficient conditions restricts the total number of linear orders on X
consistent with expected utility from 120 to 10.

3.2. Sample

The sample consists of 2135 individuals that selected alternatives from one or two choice sets
for all costs of attention, as shown in Figure 4, for a total of 12297 observations. The number of
observations per alternative/choice set are shown in Table 11. Based on these observations the
primitive for our analysis is the collection of observed frequencies (p̂(a,A))a∈A,A∈A. We compute
these frequencies for all costs. Unless otherwise stated p̂(a,A) refers to observed frequency in the
data pooled across attention costs.
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Figure 5 – Distribution of demographics in sample
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Figure 6 – Estimated frequency of the Outside Option: Average by menu size.

Figure 5 summarizes the distribution of gender, age, education, ethnicity, labor and income
in our sample. Our subjects are a diverse sample of US individuals. By design, demographics
are balanced across consideration cost treatments and choice sets (that can also be thought as
treatments).

3.3. Descriptive Analysis: Evidence for Costly Consideration

In this section we describe behavior of individuals in our sample and show that our cost
treatments effectively induce costly consideration in a reduced form analysis.33 In particular, we
observe that the consideration cost treatments: (i) have a significant effect on the choice frequency of
the outside option; (ii) have a heterogeneous effect on the choice frequencies of all other alternatives;
(iii) affect the dynamics of choice with respect to the size of the menu; and (iv) have a significant
effect on the time dedicated to each task. Moreover, all these effects depend monotonically on the
level of difficulty of choice induced by each treatment.

Under the null hypothesis of full consideration (ineffective consideration cost), the observed
frequency of choice of the outside option should remain the same. The reason is that the choice
menu remains the same across cost treatments, and payment is at random. However, the outside
option is chosen more often as the cost increases (see Figure 6 and Table 14). This is evidence in
favor of limited consideration. In addition, we observe that the choice frequency of the outside
option decreases with the menu size, providing evidence against choice overload. We remind the
reader that choice overload can not be generated by L-HRC.

In passing, we highlight the remarkable linear relationship between the outside option frequency
33We use here a linear probability regression framework that delivers a simple correlation analysis.
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Figure 7 – Choices and Consideration Cost

of choice and the consideration cost. This seems to be a new stylized fact that we document here,
but leave its further analysis for future work.

Table 12 shows that the net effect of menu size on the choice frequency for the outside option
is positive for the medium and high costs; when it is very costly to compute the lotteries is more
likely that DMs decide not to consider any alternative and choose the outside option.

Figure 7 shows the effect of the treatments on the choice frequencies while Tables 13-14 in
Appendix D show the correlation between choices, consideration cost treatments, size of the menu
and the order of the alternatives within the menu.

The harder it is to understand the lotteries,34 the more likely subjects opt to not consider
them and instead choose the outside option. These results support the effectiveness of the induced
treatments. Figure 7 also shows that the effect of the cost treatment is not homogeneous across
alternatives. The choice frequency of alternative 1 increases with the cost treatment; the cost does
not have a significant impact on the probability of selecting lottery 4; while it has a negative impact
on the other alternatives.

Overall, the probability of selecting any given lottery decreases with the size of the menu,
suggesting that regularity is satisfied in most of our sample, as shown in Figure 8. However, this
relation is nonmonotonic for the empirical choice frequency for the pooled data, in particular around
menus of size 4 suggesting a violation of regularity. This nonmonotonicity appears also for the
medium and high cost treatments, as shown in Figure 12. In Appendix E we provide an extended
analysis of the evidence of choice overload and attraction effect.35

34Here simplicity comes in the form of how easy (number of arithmetic operations) it is to compute expectation,
variance, and expected utility of the lottery in terms of the number of prizes and whether the probabilities are
uniform on the support of the lottery or not.

35We find evidence that regularity fails only for the medium case using our formal testing procedure. We also find
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Figure 8 – Frequencies of choice in pooled data as a function of menu size

Finally, we find a significant effect of the cost treatment on the time dedicated to complete
tasks. The time it takes to complete a task (choice set/cost) may be related to the size of the
choice set and cost of consideration. These correlations are shown in Table 15. The sensitivity of
the individual decision times to our treatments is evidence of their effectiveness.36

4. Testing Random Consideration Models

In this section we report the results of testing the validity of RUM and L-HRC to describe
our experimental data. In particular, we focus on the EU restriction on the preference support
(REU(X)). Unless otherwise stated the tested hypothesis is that, for a particular specification of
our model (consideration set stochastic rule/cost treatment), there exists (m,π) that is a L-HRC
representation for behavior. We report the value of the test statistic and the corresponding p-value
coming from the bootstrap distribution for the test statistic (500 bootstrap replications for every
test statistic were conducted). The p-value is interpreted as the probability of observing a realization
of the test statistic that is above the one that is actually observed due to sample variability, if the
null hypothesis is indeed correct. Then, the smaller the p-value is, the more evidence the researcher

that regularity fails in the pooled data.
36We also find that the frequency of choice of an alternative that is different from the outside option increases

when the alternative is seen immediately after the outside option. The higher the consideration cost is, the stronger
the order effect becomes. This result is consistent with a story of limited consideration where the DM may just
consider the first few alternatives she sees in the menu. Search and satisficing can be seen as a special case of random
consideration when the threshold is random (Aguiar et al. (2016)). The study of order effects is left for future work.
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Table 3 – Results for EU-L-HRC - Limited Consideration Summary of the testing results for
L-HRC with L ∈ {LA,MM,RCG} when DMs are assumed to be expected utility maximizers
within their consideration sets.

Consideration Set Rule

LA MM RCG

Sample N Test-Stat. p-value Test-Stat. p-value Test-Stat. p-value

Low Cost 4099 105305 0.4117 63302 0.0220 45412 0.0235

Medium Cost 4099 301213 0.4813 - - - -

High Cost 4099 78699 0.7006 59175 0.2740 24090 0.4186

has to reject the hypothesis of the validity of a L-HRC representation.

4.1. Results per Consideration Cost Treatment

We have run a (statistical) survival race among competing models of behavior. We test for
the validity of RUM, EU-RUM, EU-LA, EU-RCG, and EU-MM. We test the special case of RUM
with the EU restriction because our choice sets are composed by lotteries. As we explained before,
this restriction is a test of Random Expected Utility Model by Gul et al. (2014) in the case with full
consideration. In the rest of this section we will refer to the L-HRC models without EU for short.

We use the relation between the different models (see Figure 2) to learn about their empirical
ability to describe the behavior of our experimental population. First, we use the fact that RUM
and LA are the biggest models that are not nested by any other model of interest. Our first finding
is that LA cannot be rejected at all standard confidence levels for the three costs of consideration
(see Table 3). In contrast, RUM is rejected by the intermediate cost of consideration at the 90
percent confidence level (see Table 4). Our main conclusion is that the standard RUM cannot
describe the behavior of the population for all costs, but LA is successful at this task. We underline
the fact that a population of DMs with full consideration (and arbitrary distribution of preferences)
would have been described at all cost of consideration by RUM. This is not the case. Hence, this is
evidence in favor of the presence of limited consideration at the population level. Moreover, when
we restrict our attention to EU-RUM then all three costs of consideration cannot be described by
the model proposed in Gul et al. (2014). Nonetheless, we also find that both RUM and LA cannot
be rejected for the high and low costs of consideration.

Given these results, we turn to testing the two additional models of interest RCG and MM,
which are subsets of the models above. The main purpose of this exercise is to further understand
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Table 4 – Results for RUM: Summary of the testing results for RUM and EU-RUM

RUM EU-RUM

Sample N Test-Statistic p-value Test-Statistic p-value

Low Cost 4099 271.07 0.5326 2211.95 <0.002

Medium Cost 4099 401.74 0.0919 1292.72 <0.002

High Cost 4099 225.97 0.8966 1567.60 <0.002

the population behavior for these cases.37 (For the intermediate case, given that RCG and MM
are subsets of RUM, we must also reject them.) For the high and low costs of consideration, we
have strikingly different results. Whereas the RCG and MM models are rejected at all standard
confidence levels for the low cost of consideration, the same two models cannot be rejected for
the high cost case. The latter result implies that the highly stylized MM model can describe well
the behavior of the population for the high cost, and perhaps surprisingly, we cannot reject the
hypothesis that MM is the only rule of consideration that describes the population behavior within
the class of LA and RCG rules. This follows from the fact that the MM model is exactly the
intersection of the LA and RCG models. This implies that if the true data generating process for
this population behavior is consistent with MM, then no other LA or RCG model can describe the
same data.

For the low cost case, the behavior of the population is described well by both LA and RUM,
but RCG (and hence MM) fail to do so.38

Taken together, these findings imply that even when RUM can describe well behavior in the
high and low costs, it is not identifying a stable distribution of preferences that are consistent
with full consideration. Moreover, we find that this instability in the distribution of preferences is
compatible with limited consideration with a LA specification.

Our results provide the first empirical description of how different models of limited consideration
explain the population behavior for different levels of the cost of consideration. These results are
summarized in Figure 9.

Evidence for Limited Consideration First, the finding that full consideration and (stable
across costs) RUM fail to describe the population behavior suggests that DMs may be suboptimizing

37If the population of DMs had full consideration in the high and low cost, given that the choice sets faced by
DMs across different cost levels are the same, and payment is at random, it must be that the same distribution of
preferences must describe the two cost levels. This is not the case, as we will see next, providing further evidence
against full consideration happening for both the high and low cost.

38This finding suggests that there is a special LA consideration rule that is also RUM that is not one of the other
models. This model, is to our knowledge, unknown in the literature and it remains an open question what this
model looks like.
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Figure 9 – Summary of the Testing Results for L-HRC. Light shaded areas correspond to the
set of behaviors that are not rejected for each of the tested models. Dark shaded areas
indicate the set of behaviors that is consistent with two or more models.

due to limited consideration. Nevertheless, even when there is evidence in favor of limited
consideration, DMs may look consistent with RUM for fixed cost level. In fact, many fast and
frugal heuristics and limited consideration behaviors are consistent with this finding. A prominent
example is MM, a special case of RUM that successfully describes the high cost case. In other
words, without the presence of varying consideration costs with a fixed choice set and payment at
random, it would be impossible to differentiate between RUM and L-HRC.

Second, we test the LA, MM, and RCG models with the EU restriction. Table 3 presents the
formal results. We find that LA with heterogeneous preferences of the EU type provides a good
description for each of the consideration cost treatments, since we cannot reject the hypothesis that
behavior is generated by LA-HRC. This is the first evidence in favor of LA as a feasible extension
of EU-RUM that describes well the lottery choice behavior of a large population of DMs. The
EU-RUM is strongly rejected for all cost cases as seen in Table 4. In this sense, we find that EU is
a reasonable description of behavior once we have taken into account limited consideration. This
finding has implications for the literature interested in violations of the independence axiom in the
context of choice over lotteries. Here we have shown that a limited consideration explanation for
observed departures from the EU maximizing benchmark is empirically supported.

Choice Overload and Attraction Effect in the Aggregate Third, our findings provide
evidence against choice overload in our population. The key common feature of LA, RCG, and
MM is that they are not compatible with choice overload. Even the most general model of limited
consideration yet, the RAM (Cattaneo et al. (2017)), does not allow for choice overload. The
reason is simply that limited consideration rules allow the DMs to simplify large choice sets and,
hence, they are immune to the choice overload phenomenon. Since we cannot reject the LA model
in all cost levels we find no evidence in favor of choice overload.39 We may see this phenomenon
spuriously as an artifact of sample variability. Note that this is a population result and we cannot
say anything about the importance of choice overload for individual datasets. However, this finding
puts in perspective the relevance of choice overload at the population level.40

39In addition, in our regression analysis of the experimental data we show that the relative frequency of choosing
any of the lotteries increases with the size of the menu (Tables 13-14).

40 See Appendix E.1 for more details on choice overload and attraction effect.
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Fourth, our results are consistent with attraction effect. In particular, we reject RUM for the
intermediate cost case. We remind the reader that LA is consistent with attraction effect while
RUM, MM, and RCG are not. The only way RUM is rejected and LA is not is that there are
violations of regularity, while the probability of choosing the outside option is well-behaved or
consistent with regularity. In our setup this is evidence in favor of the attraction effect and against
choice overload. We do not find support for the attraction effect at the high and low costs of
consideration. This result is new in the literature and leaves as an open question what is the role
of the consideration cost in generating anomalies of behavior.

Revealed Consideration Set Rules and Cost of Consideration Finally, our evidence sug-
gests that DMs actively change their consideration rules according to the cost of consideration in a
way that is always compatible with LA. However, there is a lot of heterogeneity within costs of
consideration. For example we cannot reject that MM (therefore RCG) describes behavior in the
high cost treatment. Intuitively, as the cost reduces, DMs may exert more effort and abandon fast
and frugal heuristics but still do not fully consider all alternatives in their choice set. Instead, they
may follow more reflective consideration rules that can be captured by our L-HRC model. Indeed,
at the low cost and the medium cost the RCG and MM models are rejected. This suggests that,
when DMs are able to better understand choices, they stop using simple consideration rules such as
categorization or choice set independent consideration. Recall that LA describes well behavior for
the low cost case.

A limitation of our experimental design is that at the low cost of consideration we cannot be
sure that DMs have full consideration. Even when they do not have to face a cognitive task when
facing an alternative, consideration may still be costly. Given our experimental design it is expected
that at the low cost the population behaves as if it is consistent with RUM. In this case, we cannot
differentiate whether DMs have limited consideration of the LA type or if they behave as if they
are maximizing their own preferences with full consideration over the extended choice set (i.e.,
X ∪ {o}).41 Both the LA model and RUM do a fine job in describing the low cost behavior. The
main difference between these two models is how they rationalize the positive mass of DMs that
choose the outside option. RUM places positive probability on the preference types that set o first
in their preference order. In contrast, LA places o last, while explaining the positive mass of choice
on the outside option by the probability that DMs did not consider anything else.

As a final consideration, our findings support the hypothesis that limited consideration in high
cost of consideration environments may be in fact compatible with the i-Independence condition in
Manzini and Mariotti (2014). This condition requires that the probability of considering any given
item is independent from the choice set. This finding is novel and we believe it informs about the
conditions under which it may be better to use the highly tractable MM model.

41Future extensions to our experimental design may address this question by studying an outside option that is
dominated by all other lotteries in the first-order stochastic sense.
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Table 5 – Test for the consistency of preference identification Joint test for the stability
of identified preference distribution π across consideration costs.

Model Hypothesis p-value

RUM πRUM
Low = πRUM

Medium = πRUM
High <0.002

LA πLA
Low = πLA

Medium = πLA
High 0.6623

4.2. Validity of the L-HRC-rule - Stability of Preferences

L-HRC assumes that the distribution of preferences in the population is independent of the
consideration rule. We remind the reader that in our experiment the choice sets faced by any
subject are exactly the same for the three consideration cost treatments. Given our pay-at-random
incentives scheme, choices from each choice set can be considered as i.i.d. draws from the underlying
random utility distribution under the null hypothesis of stochastic rationality. Therefore, the
independence assumption together with our experimental design imply that if one of the L-HRC
theories describes the behavior of the high cost treatment, it must also describe the behavior of
the low cost treatment. That is, if the independence assumption holds, then the distribution of
preferences, π, should be invariant to changes in consideration costs for theories that we cannot
reject. We check the validity of this hypothesis in this section.

Given that LA is the only model we cannot reject as a description of population behavior at
every cost level, we first test whether the underlying distribution of preferences at different cost
levels is the same: πLA

Low = πLA
Medium = πLA

High, were πLA
cost is the distribution over preference implied

by mLA at cost ∈ {Low,Medium,High}. The results are presented in Table 5. We cannot reject
this hypothesis of joint stability of preferences inferred from the LA specification, and its ability to
describe the population behavior.42

Next, we test a similar hypothesis for RUM. In stark contrast to LA, even though RUM does a
good job describing the data for the high and the low cost treatments, it fails to identify a stable
underlying preference distribution. For RUM we reject the hypothesis that the same distribution
of preferences can rationalize behavior across consideration cost treatments (See Table 5). This is
an intuitive result since behavior at the high cost is consistent with MM but behavior at the low
cost is not.

Summarizing, LA is not rejected in any of the consideration cost treatments. Moreover, we cannot
reject the hypothesis that the underlying distribution of preferences is the same across consideration

42The test of stable preferences does not require any modification to the Kitamura and Stoye (2018) framework.
The data is the stacked vector of all calibrated P̂LA

πcost
and the stacked vector of calibrated mLA

cost, both ordered
according to the consideration cost. The matrix B is replaced by the horizontally stacked matrix, [B′B′B′]′; the
columns remain the same as in the test for a fixed cost because the preference support is unchanged. The diagonal
matrix Idm

of dimension dm is multiplied by 3.
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Table 6 – Results for Pooled Data - 12297 observations

Full Consideration Limited Consideration

Model Test-Statistic p-value Model Test-Statistic p-value

RUM 468.06 0.0037 LA 681260 0.2590

EU-RUM 4170.17 <0.002 MM 322469 0.0087

RCG 202249 0.0084

costs under LA. This finding supports our independence assumption between consideration and
preferences and supports the empirical validity of our identification results.

4.3. Evidence from the pooled data: Do results stand if we aggregate across cost
treatments?

As an important robustness check, we analyze whether our main findings stand after aggregating
behavior across consideration costs. We test whether pooled behavior admits a representation
by a L-HRC model or by RUM. This is important since: (i) The evidence against RUM and in
favor of LA may not stand after aggregating behavior across cost treatments. After all, in many
applications we cannot condition on the consideration cost. (ii) The nonrejection of LA may be an
artifact of our sample being finite. The probability of making type-II error may be relatively big
even for our sample size. We remind the reader that our experiment is by far the largest of its kind.
Testing in the pooled data directly addresses the first concern and partially address the concerns
about the sample size (after pooling the data the sample size increases from 4099 observations to
12297 observations).

We find that in the pooled data we reject RUM at the 95 percent confidence level while we
cannot reject LA. These findings are summarized in Table 6. This confirms our previous results
and provides evidence against the concerns described above.

Note that for LA-HRC, rationalization for each consideration cost by the model does not imply
that there is a representative agent that is consistent with it in the pooled data. In contrast, if
RUM describes well every single cost treatment it must also describe the pooled behavior (see
Apesteguia et al. (2016), and Aguiar et al. (2016).). In this sense, the pooled test has high statistical
power against LA and less so against RUM. Nevertheless, we find that we reject RUM and we
cannot reject LA. This should inform us that even with the total sample of 12297 independent
choices there is evidence against the standard model of stochastic rationality and in favor of limited
consideration.
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4.4. Discussion

Our testing results are robust to DMs mistakes when understanding the lotteries once they
decide to pay attention to them, as discussed in Appendix C.4. However, as in any design with a
cognitive task, we may not identify the true distribution of preferences. If this is the case, then
preference distribution will depend on the cognitive cost. However, we find that we cannot reject the
null hypothesis that LA has a stable distribution of preferences across consideration cost treatments.
Therefore we find no evidence for systematic misperception.

We show that limited consideration behavior changes across consideration costs providing
evidence that limited consideration may be the mechanism behind choosing the outside option. The
consideration models we study are also robust to the outside option playing the role of a reference
point (see the work of Suleymanov (2018)).

Freeman et al. (2018) provides an alternative mechanism for the selection of a riskless lottery
over dominant risky choices from pairwise comparisons, when binary choice sets are presented as
lists. Freeman et al. (2018) proposes a theoretical explanation of the choice of the riskless choice
with a model of reference dependence. The class of reference dependence models used by these
authors are a special case of utility maximization. Recall that we find evidence against RUM in
our experiment thus ruling out Freeman et al. (2018) mechanism for our environment with costly
consideration. In addition, our experimental design subjects are not required to choose from lists
nor are restricted to pairwise comparisons, they face one choice set at a time.

We finish this section by discussing our model and our findings in relation to Rational Inattention
(RI) models. Caplin et al. (2016) shows that rational inattentive DMs form (deterministic)
consideration sets. Generally, RI primitives cannot be point-identified with standard stochastic
choice datasets. Nonetheless, RI models may still have testable implications in standard stochastic
choice datasets. In Appendix C.5 we show that a representative RI DM is compatible with
deterministic consideration sets (i.e, the presence of zero probability of choice), which is not
supported in our data. The case of a population of heterogeneous rational inattentive DMs and the
aggregation of such behavior in the population is left for future research.

5. Structural Estimation of Preferences and Attention: Implications for
Welfare

In this section we use Theorem 3 to estimate the severity of limited consideration across
consideration costs, its effect on choices and therefore on welfare. We also identify preferences.

We start with considering the LA restriction on random consideration because it is the only model
that is not rejected across all costs of consideration. We find that the estimated distribution over
consideration sets exhibits substantial heterogeneity. For example, the probability of considering
the grand set X is decreasing with the cost of consideration.
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Figure 10 – Estimated Stochastic Consideration Rule across Cost Treatments

Next we restrict the analysis from the previous section to a class of CRRA Bernoulli utility
functions. That is, we consider a parametric utility function

u(x) =


x1−σ

1−σ , −1 ≤ σ < 1,
ln(x), σ = 1.

The CRRA restriction further reduces the cardinality of REU(X) from 10 orders to 6 orders. We
consider this restriction because it exhibits single-crossing which guarantees uniqueness of the
distribution over preference orders π (Apesteguia et al. (2017)), and it has been extensively studied
in the literature (e.g., Holt and Laury (2002)). We find that the CRRA restriction does not change
our previous findings. That is, we do not reject our hypothesis of independence of preferences
(consistent with the CRRA restrictions) and random consideration (consistent with the LA-rule);
while the random consideration rule changes across consideration costs.43

5.1. Estimated Stochastic Consideration Rule

We estimate m̂LA from (p̂(o, A))A∈A.44 We now focus on the distribution over consideration
sets when DMs face the grand choice set X (the analysis can be conducted for any other menu
A ⊆ X). Focusing on X allows us to estimate the distribution of consideration over all possible
menus in our sample.45 The estimated stochastic rule for X across cost treatments as a function of

43In particular, we cannot reject stability of preferences across consideration cost treatments. The p-value of the
hypothesis that πCRRA-LA

Low = πCRRA-LA
Medium = πCRRA-LA

High is 0.49.
44The estimation has two steps, first we use Definition 5 to construct the first stage estimates. Next we project

them to the simplex. The second step estimator is consistent when LA is the true model, which we cannot reject.
45Note that for LA it must be thatmLA

X (D) = ηLA(D) for allD ∈ 2X . Therefore, ηLA is the stochastic consideration
rule over 2X .
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Table 7 – Aggregate Estimated Stochastic Consideration Rule per consideration treat-
ment The table displays

∑
D∈2X :|D|=k m̂

LA
X (D) with D ∈ 2X .

Consideration set size

Cost |D| = 0 |D| = 1 |D| = 2 |D| = 3 |D| = 4 |D| = 5

High Cost 0.0133 0.2125 0.1376 0.0855 0.3464 0.2061

Medium Cost 0.0001 0.2047 0.0006 0.1743 0.0003 0.6218

Low Cost 0.0001 0.0003 0.0006 0.0913 0.0003 0.9092

Estimates are bounded away from zero for attention to be well-defined for all menus, therefore minA m̂X(A) = 0.0001.

the size of the consideration set is presented on Figure 10. The figure shows that when DMs face
the high consideration cost, their attention is stochastic across different subsets of the menu. In
particular, the estimated probability of considering the entire menu is m̂LA

X,High(X) = 0.2061. As
the cost decreases consideration shifts to bigger subsets. In particular, when there is no additional
costs to compute lotteries (low cost), the estimated probability of considering the entire menu is
close to 1 (m̂LA

X,Low(X) = 0.9092). Table 7 summarizes these results.
The results in Table 7 can be interpreted as the proportion of individuals that, when faced

the grand set X, consider sets of size 0,1,2,3,4, and 5. Attention shifts towards bigger sets as
the consideration cost decreases. This is consistent with our expectations as the fraction of fully
rational or full consideration DMs grows as the cost of consideration decreases.

Figure 10 also shows that the attention is not uniformly distributed across (strict) subsets of X.
For example, for the high cost, the distribution of attention for subsets of size 4 is

m̂LA
X,High(X \ {l1}) = m̂LA

X,High(X \ {l2}) = m̂LA
X,High(X \ {l4}) = 0.0001,

m̂LA
X,High(X \ {l3}) = 0.0303,

m̂LA
X,High(X \ {l5}) = 0.3159.

This suggests that different lotteries attract attention differently. To simplify the exposition, we
compute the following average attention index for each lottery:

IA(a) =
∑

D∈2A : a∈D,

1
|D|

mA(D).

This index is an average of the consideration paid to subsets where the lottery is present weighted
by the inverse of the size of the menu. It measures the average contribution to consideration of
alternative a in X.46 Table 8 shows IX(a) for each consideration cost treatment.

The average consideration index can also be understood as the weighted probability of choice
46Note that this index can easily by extended to compute the contribution of pairs, triples, or any other strict

subset; to compute for example how any given two lotteries compete for attention.
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Table 8 – Average Consideration index per lottery / consideration treatment, IX(a)

Consideration Cost - Data Theory

Lottery High Medium Low FC

Lottery 1 0.1966 0.1247 0.1822 0.2000

Lottery 2 0.3607 0.3870 0.2125 0.2000

Lottery 3 0.1475 0.1826 0.2125 0.2000

Lottery 4 0.1486 0.1814 0.1822 0.2000

Lottery 5 0.1346 0.1260 0.2125 0.2000

frequencies if DMs were to have the counterfactual uniform distribution over all preference orders.
Under this hypothesis, full consideration would imply that each alternative would be chosen, in the
aggregate, with probability 1/5. Table 8 shows that, when there is no cost of consideration (i.e, low
cost treatment) the implied indices per lottery are not very different from full consideration. This
is not the case for the medium and high cost.

For the medium and high costs lottery 2 has the highest average attention. On the other hand,
lottery 5 seems to grab proportionally less attention when there is a cost of considering alternatives.
We remind the reader that the consideration cost is induced on prizes, while probabilities are seen
without distortion. Arguably lottery 2 is, ex-ante, one of the simplest ones to compute since it
is uniform in two prizes. With the same argument, lottery 5 seems to be the more complex to
compute (recall that the probabilities that are needed to understand the lottery are 1/5, 1/4, 3/20,
1/4, and 3/20). Note that we have not imposed any structure on m but our estimates correspond
naturally with the reasonable idea that simpler lotteries will be in average considered more often
than complex ones when choice is hard.

5.2. Estimated Preference Distribution

We remind the reader that we cannot reject the hypothesis that stochastic choices are generated
by CRRA-LA DMs whose preferences are stable across consideration cost treatments (p-value=0.49).
Imposing the restriction that expected utility maximizers can be represented by a CRRA Bernoulli
utility function we gain the uniqueness of the estimated π as discussed above.47 Therefore we can

47In order to implement this in practice, we simulate all possible orders for a CRRA parameter ranging from
σ ∈ [−1, 1] with grid with step=10−4. Since the number of lotteries is finite and CRRA is special case of EU, we
know that we can have at most 10 orders. We compute 6 orders in total, each one corresponding to a bracket of
values of σ. Due to the single crossing property these brackets are in fact connected intervals. The single crossing
property is easily verified with respect to the enumeration of orderings given by σ in which �1 corresponds to
σ ∈ [−1, 0.2287) and �6 corresponds to σ ∈ (0.3001, 1]. For example the pair l1 is preferred to l3 from order 1 to
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Table 9 – Estimated distribution across preference types given CRRA Utility and
LA-rule

Pref. Order π̂ Implied σ

l1 � l4 � l3 � l5 � l2 0.30500 [-1,0.2287)

l4 � l1 � l5 � l3 � l2 0.04905 (0.2287,0.2606)

l4 � l5 � l1 � l3 � l2 0.04905 (0.2606,0.2728)

l5 � l4 � l2 � l3 � l1 0.04905 (0.2728,0.2832)

l5 � l2 � l4 � l3 � l1 0.04905 (0.2832,0.3001)

l2 � l5 � l3 � l4 � l1 0.49880 (0.3001,1]

estimate the implied distribution over preference types, map it to our parametric assumption, and
set-estimate the implied CRRA parameter.

Our results show that π̂ places substantial positive probability on the two out of six preference
orders consistent with CRRA-LA. The fractions of individuals with preferences corresponding
to other orders are below 5 percent, as reported in Table 9. Almost 50 percent of DMs prefer
lottery 2 to the rest with σ ∈ (0.3002, 1]. Roughly 30 percent of DMs prefer lottery 1 the most,
and around 20 percent of DMs have lottery 4 or 5 as the most preferred item.48 In particular, this
preference are consistent with the fact that the default alternative is the worst according to the
DMs preferences and will only be picked if no lottery is considered. This implies that the observed
probability of choice over the outside option is a revealed measure of welfare loss.

Note that we cannot reject that the majority our DMs are risk-averse. Also, we cannot reject
that for the two major preference types, the default alternative o is ranked last according to the
CRRA parameter implied rank over X ∪ {o}. We underline that this preferences distribution is the
same for all three costs of consideration. Also, we remind the reader that we strongly rejected the
EU-RUM model, but under limited consideration of the LA type we can recover a stable preference
distribution under the CRRA restriction.
order 3, and l3 is preferred to l1 from order 4 to order 6. All pairs satisfy this property for different breaking points.

48This results are very much in line with the estimation for risk aversion in Holt and Laury (2002). The comparison
cannot be directly performed since the intervals for σ cannot be directly mapped to ours due to the structure of the
lotteries. For example, for the low and real payments -comparable payments in our design, Holt and Laury (2002)
estimates that 34 percent of the population can be represented by σ < 0.15, while 40 percent correspond to σ > 0.41.
They find similar results for larger real and hypothetical payments.

35



5.3. Welfare consequences of Limited Consideration

Our model allows to disentangle the effects of random consideration and heterogeneity in
preferences in stochastic choice data. In our data, both sources of stochastic behavior are present.
We show that, in particular for the high and medium consideration cost, the extent of limited
consideration not only changes with the consideration cost treatments, but also depends on the
alternatives and the size of the menu. Moreover, our population is heterogeneous in terms of
preferences.

Our identification results also permit us to examine the welfare effects of limited consideration in
our population. The structural estimate of welfare loss is the fraction of DMs that are suboptimizing.
Suboptimizing means that a DM does not consider the best possible lottery according to her
preference type. We are able to compute this welfare loss exactly in a cross-section of individuals
by using the independence assumption between preferences and consideration.49 The structural
estimation of LA-HRC with CRRA preferences makes sure that the preference distribution and the
random consideration rules are well-defined (this is not needed for testing).

To better understand suboptimization consider the probability of choosing the outside option.
In our model the outside option is only chosen if nothing in the menu is considered. Therefore,
(m̂LA

A ({∅}))A∈A provides an estimate of the fraction of individual who would be better off if they
considered anything but the default option only.

On top of individuals that are suboptimizing because they do not pay attention to anything but
the default option, there are also DMs that pay attention to some alternatives beyond the default,
but these alternatives were not the best according to their preference orders. Thus, these DMs
would also be better off if they considered all available alternatives. Our measure of welfare loss
takes into account these DMs as well.

The results for the grand choice set X are: (i) in the high cost case 24.07 percent of individuals
are not choosing their first option; (ii) in the medium cost case 17.34 percent of individuals are
suboptimizing; and (iii) in the low cost case only 3.76 percent of individuals fail to optimize.
These findings support the null hypothesis that hard choices impact welfare negatively via limited
consideration. In the high cost case almost 25 percent of the population chooses a dominated
option. The cognitive task we introduce is arguably quite modest, however it has a measurable
impact on the welfare of DMs. We also observe that the effect of the consideration cost on welfare
is strictly increasing.

49The fraction of DMs suboptimizing for a fixed preference type is going to be given by the fraction of DMs
that are not considering the best alternative according to the preference type multiplied by the probability of the
preference type.
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6. Conclusion

We have designed and implemented a novel experiment with a large sample that allowed us
to statistically discern among competing models of population behavior. By exogenously varying
choice sets and the cost of considering alternatives, we can disentangle two sources of stochastic
behavior: limited consideration and preference heterogeneity. We use this novel dataset to test
RUM and the extensions of the models of limited consideration( LA (Brady and Rehbeck (2016)),
RCG (Aguiar (2017), and MM (Manzini and Mariotti (2014)) with or without restrictions on
preference heterogeneity. We call this extension L-HRC.

These models provide testable implications on choices that uniquely identify the stochastic
consideration set rule from data. By calibrating consideration given the theory, we show that
testing for L-HRC can be casted into Kitamura and Stoye (2018) framework for testing RUM. That
is, we show that there exists a stochastic rule (computed from data) that is RUM if and only if
observed choices are generated by a population of individuals consistent with L-HRC.

We provide evidence against classical RUM, since consideration costs are binding for some
individuals in the population. On the other hand, we find support for the LA model with
heterogeneous preferences. We cannot reject it neither in the pooled data nor in the data that
corresponds for different levels of the consideration cost. Moreover, we cannot reject that the
distribution on preferences, implied by LA, is the same across all attention costs. This means
that once we disentangled attention and preferences under LA, the recovered distribution does not
change with the consideration cost.

Under the assumption that DMs have CRRA preferences and use LA-rule, we uniquely recover
the distribution over consideration costs and the distribution of preferences. Our findings indicate
that (i) the distribution over consideration costs is heterogeneous; (ii) there are two major preference
types in our sample. Using the estimated distributions over consideration costs and preferences
we quantify the fraction of individuals that are suboptimizing because of limited consideration for
different consideration costs. This fraction can be as high as 25 percent.
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A. Proofs

A.1. Proof of Lemma 1

Proof. We define mA({a}) = p(a,A), and mA(D) = 0 for all D ⊆ A, D 6= {a}. Let π ∈ ∆(R(X))
be a uniform probability. The pair ((mA)A∈M, π) is a HRC. We now prove that it generates any
data P . By definition if P can be generated by a HRC, we have that

p(a,A) =
∑
D⊆A

mA(D)
∑

�∈R(X)
π(�)1 ( a � b,∀b ∈ D ) , ∀p(a,A) ∈ P .

Rearranging and replacing the choice of π in the above equation we get:

∑
D⊆A

mA(D)
∑
�∈R

π(�)1 ( a � b,∀b ∈ D \ {a} ) = 1
|R(X)|

∑
�∈R(X)

[
∑
D⊆A

mA(D)1 ( a � b,∀b ∈ D )] .

For given � and mA({a}) = p(a,A), we have
∑
D⊆A

mA(D)1 ( a � b, ∀b ∈ D \ {a} ) = p(a,A)1 ( a � a ) = p(a,A)

because � includes the diagonal a � a for all a ∈ X.
This implies that

1
|R(X)|

∑
�∈R(X)

[
∑
D⊆A

mA(D)1 ( a � b,∀b ∈ D )] = p(a,A)
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given that

1
|R(X)|

∑
�∈R(X)

[
∑
D⊆A

mA(D)1 ( a � b,∀b ∈ D )] = 1
|R(X)|

∑
�∈R(X)

p(a,A) = p(a,A) .

�

A.2. Proof of Theorem 1

Proof. (i) implies (ii). A complete stochastic choice rule P is a HRC-rule if there exists a pair
(m,π) such that

p(a,A) =
∑
D⊆A

mA(D)
∑

�∈R(X)
π(�)1 ( a � b, ∀ b ∈ D ) ,

for all a ∈ X and A ∈ A, where we exchanged the summation operator with respect to the
consideration sets and the linear orders exploiting independence.

Note that we can write the probability of the default alternative as p(o, A) = 1−∑a∈A p(a,A).
This implies that

1− p(o, A) =
∑
D⊆A

mA(D)[
∑
a∈A

∑
�∈R(X)

π(�)1 ( a � b, ∀ b ∈ D )] ,

where the summation operator with respect to the items a ∈ A can be exchanged with the
summation over consideration sets. This is possible because the latter summation does not depend
on the items a ∈ A.

Now, we notice that ∑a∈A
∑
�∈R(X) π(�)1 ( a � b, ∀ b ∈ D ) = 1 for all D ⊆ A. This implies

that the default probability does not depend on the distribution of preferences and can be written
in terms of the cumulative distribution of the consideration set distribution:

p(o, A) = 1−
∑

D⊆A,D 6=∅
mA(D).

We let the capacity ϕ : 2X → [0, 1] be defined by ϕ(A) = p(o, A).
For given L ∈ {LA,MM,RCG,FC} and P :

• If m ∈MLA, then mA(D) = η(D)∑
C⊆A η(C) for some η ∈ ∆(2X) ∩R++.

This means that ϕ(X)
ϕ(A) = ∑

D⊆A η(D). Then by Shafer (1976) it must be that

η(D) =
∑
B⊆D

(−1)|D\B|ϕ(X)
ϕ(B) =

∑
B⊆D

(−1)|D\B|p(o,X)
p(o,B) ;

• Ifm ∈MMM, thenmA(D) = η(D)∑
C⊆A η(C) for some η ∈ ∆(2X)∩R++ with η(D) = ∏

a∈X\D (1− γ(a))∏b∈D γ(b),
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and γ : X → (0, 1). This implies by simple computation that

γ(a) = 1− ϕ(A)
ϕ(A \ {a}) = 1− p(o, A)

p(o, A \ {a})

for some A ∈ A that contains a;

• If m ∈MRCG, then mA(D) = ∑
C:C∩A=D η(C) for some η ∈ ∆(2X). Then

ϕ(A) =
∑

D∩A 6=∅
η(D).

Using Shafer (1976) and Chateauneuf and Jaffray (1989) we conclude that

η(D) =
∑

A⊆D:D∈A
(−1)|D\A|(1− ϕ(X \ A)) =

∑
A⊆D:D∈A

(−1)|D\A|(1− p(o,X \ A));

• If m is FC, then obviously mA(D) = 1 (A = D ).

To establish that m = mL for given L ∈ {LA,MM,RCG,FC} and P , we exploit the uniqueness
of m, which is a consequence of the invertibility of the Mobious transform and the completeness of
P . In particular, if (m,π) and (m′, π) represent the same P then it must be that m′ = m for the
cases of L ∈ {LA,MM,RCG,FC}. To see that this is true recall that if P is a L-HRC-rule with
(m,π), then 1 −∑D⊆A,D 6=∅mA(D) = ϕ(A). This is exactly the same for the case where there is
homogeneity in the preferences such that there is a linear order �∈ R(X) such that π(�) = 1. Since
this equivalence does not depend on the distribution of preferences and due to the completeness
of the dataset, we can use this fact to apply known results from the consideration set literature
regarding the uniqueness of m.

Now, by the Mobious inverse Shafer (1976) it follows that

ηLA(D) =
∑
B⊆D

(−1)|D\B|p(o,X)
p(o,B) ,

for all D ∈ 2X . In particular,

• By Theorem 3.1 in Brady and Rehbeck (2016), it must be that m is uniquely identified by

mA(D) = η(D)∑
C⊆D η(D) ,

where η ∈ ∆(2X) ∩R++ follows from the requirement that ∑B⊆D(−1)|D\B| p(o,X)
p(o,B) > 0 for all

D ∈ 2X .

• Given γMM(a) = 1−p(o, a) ∈ (0, 1) for all a ∈ X (which is well-defined by the completeness of
P ) and ηMM(D) = ∏

a∈X\D

(
1− γMM(a)

)∏
b∈D γ

MM(b), it follows that m is uniquely identified
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by
mA(D) =

∏
a∈D

γMM(a)
∏

b∈A\D
(1− γMM(b)) ,

for all A ⊆ D. Note that ∏b∈∅ γ
mm(b) = 1 by convention. Also observe that uniqueness

follows from Theorem 3.3 in Brady and Rehbeck (2016) since the MM restriction is a special
case of the LA restriction.

• Given ηRCG(D) = ∑
A⊆D:D∈A(−1)|D\A|(1− p(o,X \A)) ≥ 0 it follows by Theorem 1 in Aguiar

(2017) that m is uniquely identified by

mRCG
A (D) =

∑
C:C∩A=D

ηRCG(C) ,

for all D ⊆ A, where D 6= ∅ and mA(∅) = 1−∑D⊆A,D 6=∅mA(D).

• The case of FC is trivial.

�

A.3. Proof of Theorem 2

Proof. (i) implies (ii). If P is a L-HRC-rule then by Theorem 1, under conditions (i) and (ii), it
must be that

pL
π(a,A) = pm,π(a,A)−∑C⊂Am

L
A(C)pL

π(a, C)
mL
A(A) ,

where pm,π(a,A) = ∑
D⊆Am

L
A(D)[∑�∈R(X) π(�)1 ( a � b∀b ∈ D )]. Following the recursive formula,

we can show that

pL
π(a,A) =

mL
A(A)[∑�∈R(X) π(�)1 ( a � b∀b ∈ A )]

mL
A(A) =

∑
�∈R(X)

π(�)1 ( a � b∀b ∈ A ) .

This implies that P L is a FC-HRC-rule.
(ii) implies (i). Under conditions (i) and (ii), the fact that

pL
π(a,A) = pm,π(a,A)−∑C⊂Am

L
A(C)pL

π(a, C)
mL
A(A)

implies that for all A ∈ A and all a ∈ A,

p(a,A) =
∑
D⊆A

mL
A(D)pL

π(a,D) .
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If P L is a FC-HRC-rule, then it implies that there exists π ∈ ∆(R(X)) such that

pL
π(a,A) =

∑
�∈R(X)

π(�)1 ( a � b∀b ∈ A ) .

Hence, P is a L-HRC-rule. In fact, for all A ∈ A and all a ∈ A, it must be that the pair (mL, π)
generates the dataset P :

p(a,A) =
∑
D⊆A

mL
A(D)

∑
�∈R(X)

π(�)1 ( a � b∀b ∈ A ) , .

�

A.4. Proof of Theorem 3

Proof. We first prove that if P is described by (m,π) and (m′, π′), then it must be that m = m′.
This follows from Chateauneuf and Jaffray (1989). In particular, Brady and Rehbeck (2016)
shows the identification results for L = LA, while Aguiar (2017) provides identification results for
L = RCG. For L = MM the result holds trivially.

Fixing m, if P is described by both (m,π) and (m,π′), then

pL
π(a,A) = p(a,A)−∑C⊂Am

L
A(C)pL

π(a, C)
mL
A(A) ,

and
pL
π′(a,A) = p(a,A)−∑C⊂Am

L
A(C)pL

π′(a, C)
mL
A(A) ,

for all a ∈ A and nonempty A ⊆ X, which follows from Definition 7. By condition (ii), mL
A(A) > 0

and using the recursive definitions above for binary sets, we can see that pL
π(a, {a, b}) = pL

π′(a, {a, b})
for any a, b ∈ X. For a fixed m the recursive formula leads to the equivalence pL

π′ = pL
π. �

B. Testing Random Expected Utility with a Finite Choice Set and Finite
Prizes

In our experiment we have a finite set of prizes Z and a finite set of lotteries X ⊂ ∆(Z). Here
we derive the necessary and sufficient conditions for testing the null hypothesis that the population
behavior captured by P is described by a distribution of preferences π ∈ ∆(REU(X)) that is
defined over the EU restriction. Namely, the necessary and sufficient condition is that there exist a
Bernoulli utility vector u = (uz)z∈X such that for any pair of lotteries x, y ∈ X and for a preference

45



�∈ REU(X) in the restricted support (i.e., π(�) > 0), x � y if and only if x′u > y′u. Evidently, the
order � defined over X can be extended to the whole simplex ∆(Z), with the following expected
utility for any lottery w ∈ ∆(X) by: U(w) = w′u = ∑

z∈Z uzwz, where u is the same Bernoulli
utility vector as before (since prizes have not changed).

In practice, this means that we have to verify which elements of the total set of linear orders
R(X) are compatible with the expected utility restriction. We solve this problem by proposing a
simple linear programming approach. Enumerate the lotteries in X such that X = {x1, x2, · · · , xn}
following a given candidate linear order �, such that x1 � x2 � x3 · · · � xn. Define the row vector
ai = (xi − xi+1)′ for all i = 1, . . . , n − 1. Stack the rows into a matrix A = (ai)n−1

i=1 (the size is
(n− 1)× |Z|). Then, � is compatible with the EU restriction if and only if there exists a vector
u ∈ R|Z| such that:

Au > 0,

where 0 ∈ Rn−1. This is easily checked using a linear programming approach where we minimize u
subject to Au > 0.

The linear programming algorithm establishes if the problem is feasible and finds a solution if
and only if the order � is compatible with EU. Else, it declares that the program not feasible and
we eliminate � from our list of candidates.

C. Comparison with Models of Stochastic Choice

In this section we analyze the connection between the three consideration-mediated choice
theories discussed in this paper and models that allow for stochastic behavior exclusively in
preferences or in consideration.

C.1. Comparison with Random Utility Model

As explained in the previous section, randomness arising from limited consideration as in RCG
and MM can be rationalized under the umbrella of random utility. However, LA allows for behavior
that is inconsistent with regularity. Therefore LA is not nested in RUM. By construction our model
L-HRC generalizes FC by allowing for independent variation in choices due to limited consideration.
In particular, L-HRC is RUM defined over X (what we call, equivalently, FC) when the stochastic
choice rule is such that mA(D) = 1 (D = A ). We call this model FC.

Moreover, L-HRC is more general than RUM. This follows from the analysis in previous section.
In particular, fixing preferences, π(�i) = 1 (�i=� ) for �i∈ R(X), L-HRC with L = LA reduces
to original LA model by Brady and Rehbeck (2016), and therefore potentially inconsistent with
RUM.
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C.2. Comparison to the Random Attention Model

Cattaneo et al. (2017) extends many theories of consideration by proposing the Random
Attention Model (RAM). The authors allow for random consideration maps in the context of limited
attention models. RAM abstracts away from the particular consideration-set-formation rule by
considering a class of nonparametric random attention rules. The authors acknowledge that RAM
is best suited for eliciting information about preference ordering of a single decision-making unit
when her choices are observed repeatedly, which justifies the preference homogeneity assumption in
their setting.

Many of the canonical models of limited attention proposed in the literature satisfy the Monotonic
Attention property of Cattaneo et al. (2017). For instance, RAM nests LA, MM and RCG without
preference heterogeneity among other salient models of consideration sets. Additionally, RAM is
a strict generalization of RUM. However, our L-HRC is not nested in RAM, see Cattaneo et al.
(2017) for a complete description of its relationship to the literature.

Here we show that, in the presence of preference heterogeneity RAM may fail to rationalize
behavior that can be explained by L-HRC. First, we formally define the restrictions imposed by
RAM.

RAM imposes a monotonic attention restriction on consideration rules: the probability of
paying attention to a particular subset does not decrease when the total number of possible
consideration sets decreases. Formally,

Definition 8 (Monotonic Attention). For any a ∈ A \D, mA(D) ≤ mA\{a}(D)

Moreover, Cattaneo et al. (2017) provides a characterization of the model in terms of the
revealed preference information inferred from data. Formally,

Definition 9 (Revealed Preference (RAM)). Let p be a RAM. Define PR as the transitive closure
of P defined as

aPb if there exists A ∈ A with a, b ∈ A such that p(a,A) > p(a,A \ {b}) .

Then a is revealed preferred to b of and only if a PR b.

Then, a choice rule has a RAM representation if and only if PR has no cycles. The following
example of a L-HRC-rule, which results from a m ∈ MLA for two linear orders �1 and �2 with
π(�i) = 0.5 with i = 1, 2, cannot be generated by RAM.

Example 2 (RAM violation). Let X = {a, b, c} and consider a LA model for the random consid-
eration set probability measure with η(D) given as in Table 10. Moreover, consider two preference
relations �1 such that a �1 b �1 c, and �2 such that c �2 b �2 a.50 The resulting probabilistic

50In our experiment, this preference heterogeneity can be explained by heterogeneity in risk aversion. For example,
let a ≡ l4, b ≡ l3, c ≡ l2, and assume that DMs are EU-maximizers with CRRA Bernoulli utilities. Then a � b � c
for individuals that are risk-neutrals (σ = 0), while c � b � a for risk averse individuals (σ > 0.5). Holt and Laury
(2002) finds that these types are common in their experiment across payment schemes.
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Table 10 – Example 2 Stochastic choice rule and random consideration set probability. p is consistent
with LA-HRC but cannot be generated by RAM.

{a, b, c} {a, b} {a, c} {b, c} {a} {b} {c} ∅

a 0.305 0.339 0.157 0.208
b 0.250 0.339 0.227 0.208
c 0.255 0.300 0.341 0.345
o 0.190 0.322 0.543 0.432 0.792 0.792 0.655 1

η(D) 0.20 0.30 0.01 0.10 0.05 0.05 0.10 0.19

choice rule is generated by a LA-HRC by construction. However, it cannot be rationalized by RAM
since both aPb and bPa (i.e., p(a, {a, b, c}) > p(a, {a, c}) and p(b, {a, b, c}) > p(b, {b, c})).

C.3. Comparison across stochastic choice rules for identification

The following simple example shows that identification of preferences and attention is not a
trivial matter. In particular, many models may describe behavior accurately and cannot be rejected
given observed data. However, identification may not be unique. This is important when predicting
behavior and designing policy interventions.

Example 3 (Identification of m and π). Consider a population of individuals that are utility
maximizers but may not consider all alternatives available to them. Their behavior can be described
by an independent consideration rule as in Manzini and Mariotti (2014). For simplicity we assume
that all individuals share the same preferences (a � b) and that the probability of considering any
alternative is 1

2 . Let X = {a, b} and all menus A ∪ {o} with A ∈ A are observed. The table below
shows the resultant stochastic choice rule.

A

{a, b} {a} {b}

a 1
2

1
2

1
2

b 1
4

1
2

o 1
4

1
2

1
2

Identification under MM-HRC From Definition 5 we recover uniquely m from observed data.
Given m, we recover preferences uniquely for this dataset.
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Identification under RUM We can perfectly described the data with a RUM on X ∪ {o}.
However we do not recover the true preferences. For example, π(�i) = 1/4 for all i ∈ {1, 2, 3, 4}
with �1: b �1 o �1 a; �2: a �2 o �2 b; �3: o �3 a �3 b and �4: a �4 b �4 o

Identification under RAM (Cattaneo et al. (2017)) The random attention model (RAM)
proposed by Cattaneo et al. (2017) fixes preferences and consider a random attention rule that must
satisfy monotonic attention.51 Even without preference heterogeneity RAM may fail to identify
preferences for datasets consistent with it. By construction, the stochastic choice rule described in
Example 3 is consistent with RAM. However, preferences are not uniquely identified. In particular,
b � a � o describes p under RAM with the attention rule mA(D) for D ⊆ A as described below.

Consideration set D

Menu A {a, b, o} {a, o} {b, o} {a, b} {a} {b} {o}

{a, b, o} 0 1
4

1
8 0 1

4
1
8

1
4

{a, o} 1
4

1
4

1
4

1
4

{b, o} 1
4

1
4

1
2

C.4. Consideration Cost and Imperfect Perception

One possible concern with our design is that DMs consider an alternative but misperceives
the attributes (i.e., computes the wrong utility). We must point out that this concern applies
broadly to any experimental design in which subjects have a nontrivial cognitive task. The following
analysis assumes that the consideration cost is fixed. First, we need some preliminaries. For a given
distribution of preferences π ∈ ∆(R(X)), with perfect perception, there exists a random utility
array u = (ua)a∈A supported on R|A| such that for a given menu of alternatives A ∈ A:

P (ua > ub, ∀b ∈ A \ {a}) = π(� : a � b, ∀b ∈ A \ {a}).

Now, miss-perception of any alternative a ∈ A can be represented by another (possibly wrong)
random utility variable wa supported on the reals. We let w = (wa)a∈A be the array of such
random variables. This random variable represents the subjective value that the DMs assigns to
alternative a given her own perception of the item. Hence, w and u may be different (even when
they may be correlated). Without loss of generality we can define miss-perception as:

ea = wa − ua,
51A stochastic consideration rule satisfies monotonic attention if for any x ∈ A \D, mA(D) ≤ mA\{x}(D).
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for all a ∈ A (and e = (ea)a∈A).52

Under the assumption of independence of preference and attention. The only implication of
miss-perception is that subjects’ behavior will be governed not by π but rather by a different
distribution of preferences πe such that:

πe(�: a � b ∀b ∈ A \ {a}) = P (ua + ea > ub + eb ∀b ∈ A \ {a}) .53

In other words, the population of DMs behavior captured by P will still be represented by a L-HRC
model with (πe,m) instead of the true (π,m). This means that our design is robust to any arbitrary
miss-perception error, in terms of the validity of our conclusions about how good are the different
models to describe the population.

The only possible problem induced by miss-perception of alternatives is that we may loose the
capacity to identify the true distribution of preferences. This possibility again is unavoidable in
any experimental design that has a cognitive task. Nonetheless, this possibility is testable in our
framework. In particular, if miss-perception exists, it must depend on the cognitive cost. Hence we
have the triple (eH , eM , eL) that represents the miss-perception random array for the high, medium
and low cost, respectively. Then, the distribution of preferences for any L-HRC model must not be
stable across attention treatments with corresponding (πeH , πeM , πeL) distribution of preferences
(that differ among costs).

However, we cannot reject the null hypothesis that LA has a stable distribution of preferences
among the different cost distributions (i.e., πeH = πeM = πeL = π). In that sense, there is no
evidence that miss-perception is important in our design.

C.5. Relation with Rational Inattention Models

Rational inattention (RI) models have recently gained a lot of interest to model situations when
choice is hard. However, RI models usually need very rich datasets to be indentified/tested. That
is, generally they cannot be identified with standard stochastic choice datasets. In that sense, we
cannot do a full comparison between RI models and our approach since the dataset requirements
are different. However, we can derive some implications of RI behavior for our dataset.

RI is a model for individual behavior. To the best of our knowledge the aggregate implications of
this model are unknown. Hence we will focus on comparing our approach to a case of a representative
RI behavior. The problem of the representative RI DM is to choose the best possible alternative
from a choice set. She has a prior µ over the true value of alternatives, V = (vk)k∈X∪{o} , with
µ ∈ ∆(V ). In response to the information structure, the RI DM chooses her optimal information
to adquire and optimal action. We focus here on the subclass of RI problems with an additive cost
of perception. The result of this problem is a true-value or state dependent stochastic choice rule

52Note that in our experimental design, menus are randomly assigned to a DM. In addition, the presentation of
each alternative remains the same across menu, conditional on the cost of consideration. Then, it must be that the
distribution of miss-perception (by-design) is the same across menus.

53Where πe(�: property) denotes the cumulative probability of preferences that have a certain property.
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pv(·, A) ∈ ∆(A ∪ {o}), defined as:

pv(·, A) = arg max
p

∑
a∈A∪{o}

pv(a,A)vaµ(va)− κ(pv(·, A), µ).

For the specification of κ, we focus on the generalized entropy proposed in Fosgerau et al. (2017),
which generalizes widely used entropic cost. Fosgerau et al. (2017) shows that this state-dependent
stochastic choice is observationally equivalent to an additive random utility choice rule conditional
on the support. That is, if pv(·, A) ∈ ∆(A ∪ {o}) (positive probability of choice), then pv(·, A) is
a random utility rule. Even when the underlying utility is fixed (and equal to v without loss of
generality), there is randomness in choice due to costly information acquisition. The state-dependent
stochastic choice only differs from RUM when there are items in the choice set that are never
chosen. Therefore, the RI DM is compatible with deterministic consideration sets. However, in
our experiment we do not observe any element chosen with zero probability. In fact, the lowest
probability of choice is 6 percent across all alternatives in X ∪ {o} and across all choice sets.

We have to aggregate across states to derive testable implications for the representative RI DM
for our dataset. This is because in our setup, the experimenter does not know ex-ante the true
value of alternatives. Preferences over lotteries (when there is not first-order stochastic dominance
ordering among them) is unknown before choice. This is an important difference between our
experiment and RI experimental literature, since they generally rely on enhanced datasets. We
focus on collecting data sets that replicate standard stochastic choice data.

Using the fact that the sum of random utility rules is also a random utility rule, we notice that
the marginal probability of choosing across different states is just the sum over the likelihood of
this states (or the distribution of the true preferences). Then, if P admits a representative RI DM:

p(a,A) =
∑
v∈V

pv(a,A)ρ(v),

where ρ ∈ ∆(V ) is the objective probability of the unobserved states.

Lemma 2. If pv(a,A) > 0 for all a ∈ A ∪ {o}, and all v ∈ V , it follows that if P admits a
representative RI DM then, P also admits a RUM representation.

The proof of this lemma follows from Fosgerau et al. (2017) and from Aguiar et al. (2016) that
showed the that weighted sum of RUM is also RUM. The case in which one allows heterogeneity
in discrete consideration sets, induced by RI, is difficult and left for future research.

Optimal Random Consideration for LA It is still an open question whether the (reduced-
form) LA random consideration model can be generated from a behavioral optimization problem.
Here we show that LA can be obtained as the result of allocating attention optimally. Consider
a DM that, faced with a menu A, needs to allocate her attention, measured by mA ∈ ∆(2A),
over all possible consideration sets in A, including the empty set. We assume that each set D
has a (deterministic) attractiveness index α(D), with α : 2X → [0, 1], that measures both, how
enticing a consideration set is, but also how complex it is to understand. That is, is a net measure
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of attractiveness with respect to how hard is to consider it. Therefore, if α(C) > α(F ) we say
that C is in net terms more attractive than F . The key assumption is that α is deterministic
and does not depend on the distribution of preferences π ∈ ∆(R(X)) in the population. This
implies independence between random consideration consideration sets captured by mA and random
preferences captured by π.

Choice difficulty is captured by a cognitive cost function K that is menu independent but
depends on the allocated attention, measured by mA(D), for a fixed D ⊆ A: K : [0, 1]→ R ∪∞.
Following Fudenberg et al. (2015) we assume that K is strictly convex. Then, DM’s problem is to
optimally find mA ∈ ∆(2A) to maximize expected attractiveness of the menu given the cognitive
cost of processing it. Formally:

mA = arg max
m∈∆(2A)

∑
D⊆A

[m(D)αA(D)−K(m(D))],

where αA : 2A → R is a menu-dependent attractiveness that depends on α (the menu independent
attractiveness defined before).

When K(m(C)) = 0, and αC(D) = α(D) for any C ⊆ D, under the assumption that α(A) >
α(D) for all D ⊂ A we get mFC

A (A) = 1. That is, the DM is consistent with FC.
More importantly, under entropy cost, K(m(D)) = θm(D) logm(D), from Fudenberg et al.

(2015) (and αA(D) = α(D)) we get that:

mLA
A (D) = θα(D)∑

C⊆A θα(C) .

That is, optimal consideration is consistent with LA.
Turns out that RCG can also come from a different optimization problem with a quadratic cost

K(m) = ν
2m

2, where the attractiveness of the menu is given by the cumulative attractiveness that
is menu dependent:

αA(D) =
∑

C∈2X :C∩A=D
α(C).

With this in hand we get:
mRCG
A (D) = 1

ν

∑
C∈2X :C∩A=D

α(C),

where ν ensure that this is well-behaved probability distribution.
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D. Experiment

D.1. Experimental Design

(a) Utility Comparison all levels (b) Risk-Loving

(c) Neutral to moderate risk aversion (d) Highly risk aversion

Figure 11 – Comparison between lotteries in terms of risk aversion. Simulations for EU
maximizers individuals, with CRRA utility function u(x) = x1−σ

1−σ .

D.2. Sample

The primitive for the considered models is the estimated stochastic choice rule p̂(a,A|k) for
k = {H, M, L, pooled}. Therefore, for a fixed level of the cost k, the minimal required sample size
was calculated to be proportional to the cardinality of the choice set. To maximize the number of
observations for a given set of individuals, some individuals faced two decision tasks. In order to
prevent possible learning, these subjects faced disjoint choice sets. That is, every subject faced
either the full choice set X ∪ {o} or two choice sets that only had the outside option in common.
Therefore, because of random assignment, in our experiment

(i) 171 subjects faced only the whole choice set (the targeted number is 180);
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Table 11 – Average number of observations per alternative/choice set

Choice set N N/ |A| Choice set N N/ |A|
o12345 171 28.50 o12 131 43.67
o2345 155 31.00 o13 118 39.33
o1345 154 30.80 o14 125 41.67
o1245 149 29.80 o15 116 38.67
o1235 156 31.20 o23 112 37.33
o1234 143 28.60 o24 123 41.00
o345 131 32.75 o25 120 40.00
o245 118 29.50 o34 121 40.33
o235 125 31.25 o35 122 40.67
o234 116 29.00 o45 119 39.67
o145 112 28.00 o1 155 77.50
o135 123 30.75 o2 154 77.00
o134 120 30.00 o3 149 74.50
o125 121 30.25 o4 156 78.00
o124 122 30.50 o5 143 71.50
o123 119 29.75

(ii) 757 subjects faced pairs of disjoint choice sets: the set of size 4 and the set of size 1 (the
targeted number is 750);

(iii) 1207 subjects faced pairs of disjoint choice sets: the set of size 3 and the set of size 2 (the
targeted number is 1200).

This implies a total number of 2135 (the targeted number is 2130) observations for 4099 tasks
(the targeted number of tasks is 4080). Additionally demographic data and preferences over binary
comparison of lotteries were asked and incentivized. The effective number of observations per
alternative/choice set/cost is summarized in Table 11.
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D.3. Comparative Statistics

Figure 12 – Dynamics of Choice for all treatments
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Table 12 – Determinants of Selecting the outside option Likelihood of choosing the outside
option as a function of size of the menu, induced cost of attention and whether it is the
first or second menu. Standard errors are in ().

P(Choice=Outside Option)- Linear Probability Model

(1) (2) (3) (4) (5)

Size Menu 2 -0.1467*** -0.1472*** -0.2229*** -0.1420*** -0.1423***
(0.0116) (0.01157) (0.0153) (0.0198) (0.0198)

Size Menu 3 -0.1892*** -0.1855*** -0.2637*** -0.1868*** -0.1831***
(0.0116) (0.0116) (0.0153) (0.0198) (0.0198)

Size Menu 4 -0.1779*** -0.1748*** -0.2571*** -0.1797*** -0.1766***
(0.0128) (0.0129) (0.0180) (0.0220) (0.0220)

Size Menu 5 -0.2495*** -0.2319*** -0.2962*** -0.2333*** -0.2156***
(0.0211) (0.0216) (0.0343) (0.0362) (0.0364)

High Cost 0.1625*** 0.1625***
(0.0220) (0.0220)

Medium Cost 0.0793*** 0.0793***
(0.0220) (0.220)

High Cost x Size Menu 2 0.1559*** -0.0067 -0.0066
(0.0174) (0.0281) (0.0280)

High Cost x Size Menu 3 0.1625*** -0.0001 0.0000
(0.0174) (0.0281) (0.0280)

High Cost x Size Menu 4 0.1625*** 0.0000 0.0000
(0.0220) (0.0311) (0.0311)

High Cost x Size Menu 5 0.0994** -0.0631 -0.0631
(0.0463) (0.0512) (0.0512)

Medium Cost x Size Menu 2 0.0713*** -0.0072 -0.0080
(0.0174) (0.0281) (0.0280)

Medium Cost x Size Menu 3 0.0721*** -0.0072 -0.0071
(0.0174) (0.0281) (0.0280)

Medium Cost x Size Menu 4 0.0854*** 0.0053 0.0053
(0.0220) (0.0311) (0.0311)

Medium Cost x Size Menu 5 0.0936** 0.0143 0.0143
(0.0463) (0.0512) (0.0512)

First Menu -0.0322*** -0.0322*** -0.0322***
(0.0079) (0.0080) (0.0079)

Constant 0.4016 0.4161 0.4161 0.3210 0.3356
(0.0091) (0.0098) (0.0097) (0.0155) (0.0159)

Observations 12297 12297 12297 12297 12297
Adjusted R2 0.0263 0.0274 0.0445 0.0474 0.0486
p-value F 0.000 0.000 0.000 0.000 0.000
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Table 13 – Determinants of Choice Linear probability model coefficients are reported with
standard errors (), and p-values are displayed.

Lottery 1 Lottery 2 Lottery 3
(1) (2) (1) (2) (1) (2)

Cost High 0.0256*** -0.0505** -0.0482*** -0.0179 -0.0258*** -0.0811***
(0.0071) (0.0205) (0.0090) (0.0260) (0.0077) (0.0222)
0.000 0.014 0.000 0.491 0.001 0.000

Cost Medium 0.0126* -0.0200 0.01330 -0.0146 -0.0367*** -0.0423*
(0.0071) (0.0208) (0.0090) (0.0264) (0.0077) (0.0226)
0.074 0.344 0.138 0.580 0.000 0.061

Seen First 0.0848*** 0.1411*** 0.1209*** 0.2168*** 0.0880*** 0.1463***
(0.0063) (0.0175) (0.0079) (0.022) (0.0068) (0.0190)
0.0000 0.0000 0.000 0.000 0.000 0.000

Size Menu 0.0185*** 0.0182*** 0.0516*** 0.0730*** 0.0150*** 0.0196***
(0.0027) (0.0052) (0.0034) (0.0066) (0.0029) (0.0057)
0.000 0.001 0.000 0.000 0.000 0.001

Size × Seen First -0.0309*** -0.0490*** -0.0297***
(0.0056) (0.0071) (0.0061)
0.000 0.000 0.000

Cost High × Seen First 0.0419*** 0.0530*** 0.0393**
(0.0153) (0.0194) (0.0166)
0.006 0.006 0.018

Cost Medium × Seen First 0.0147 0.0228 0.0028
(0.0152) (0.0193) (0.0165)
0.333 0.237 0.865

Cost High × Size 0.0239*** -0.0182** 0.0164**
(0.0066) (0.0083) (0.0071)
0.000 0.030 0.022

Cost Medium × Size 0.0101 0.0073 0.0015
(0.0066) (0.0084) (0.0072)
0.126 0.387 0.832

Constant 0.0269 0.0327 0.0525 0.0017 0.0932 0.0841
(0.0034) (0.0162) (0.0206) (0.1383) (0.0102) (0.0176)
0.004 0.044 0.934 0.000 0.000 0.000

Observations 12297 12297 12297 12297 12297 12297
Adj R2 0.0160 0.0196 0.0335 0.0385 0.0160 0.0185
p-value F 0.0000 0.0000 0.0000 0.0000 0.0000 0.000

Frequency of Choice 0.1178 0.2179 0.1424
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Table 14 – Determinants of Choice, continuation Table 13. Linear probability model coeffi-
cients are reported with standard errors (), and p-values are displayed.

Lottery 4 Lottery 5 Outside Option

(1) (2) (1) (2) (1) (2)

Cost High -0.0104 -0.0118 -0.0637*** -0.0033 0.1578*** 0.1687***
(0.0069) (0.0199) (0.0079) (0.0229) (0.0095) (0.0242)
0.132 0.554 0.000 0.886 0.000 0.000

Cost Medium 0.0003 -0.0137 -0.0454*** 0.0061 0.0766*** 0.0697***
(0.0069) (0.0202) (0.0079) (0.0232) (0.0095) (0.0242)
0.963 0.499 0.000 0.793 0.000 0.004

Seen First 0.0770*** 0.1247*** 0.0844*** 01386***
(0.0061) (0.0170) (0.0070) (0.0195)
0.0000 0.0000 0.000 0.000

Size Menu 0.0009 0.0119** 0.0182*** 0.0435*** -0.0543*** -0.0538***
(0.0026) (0.0051) (0.0030) (0.0058) (0.0035) (0.0061)
0.731 0.019 0.000 0.000 0.000 0.000

Size × Seen First -0.02747*** -0.262***
(0.0054) (0.0062)
0.000 0.000

Cost High × Seen First 0.0247* 0.0190
(0.0148) (0.0170)
0.096 0.264

Cost Medium × Seen First 0.0367** 0.0131
(0.0148) (0.0170)
0.013 0.440

Cost High × Size -0.0027 -0.0255*** -0.0042
(0.0064) (0.0073) (0.0086)
0.673 0.001 0.626

Cost Medium × Size 0.0001 -0.0217*** 0.0026
(0.0064) (0.0074) (0.0086)
0.984 0.003 0.758

Constant 0.0835 0.0603 0.1122 0.0477 0.3228 0.3215
(0.0091) (0.0158) (0.0105) (0.0181) (0.0113) (0.0171)
0.000 0.0000 0.000 0.008 0.000 0.000

Observations 12297 12297 12297 12297 12297 12297
Adj. R2 0.0138 0.0161 0.0188 0.0212 0.0403 0402
p-value F 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Frequency of Choice 0.1096 01529 0.2594
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Table 15 – Time per choice set as a function of the cost and size of the choice set

Dependent Variable: Time to Submit Choice (secs.)

(1) (2) (3) (4) (5) (6)

Cost 12.5601*** 3.8275*** 3.8275** 4.4134*** 4.3847***
(0.4175) (1.0629) (1.0616) (1.0560) (1.0550)
0.000 0.000 0.000 0.000 0.000

Size Menu 6.0122*** -0.6941 -1.1898 -1.2745 -1.8242**
(0.3076) (0.8113) (0.9704) (0.8094) (0.8074)
0.000 0.392 0.220 0.024

Cost × Size 3.3532*** 3.3532*** 3.4316*** 3.4316***
(0.3755) (0.3751) (0.3740) (0.3723)
0.000 0.000 0.001 0.000

First Question 7.2823***
(0.6847)
0.000

Constant 23.2605 -17.5174 -0.0521 3.2407 -5.9433 -8.0540
(0.3583) (1.2064) (2.2961) (3.1367) (2.3641) (2.3619)
0.000 0.0000 0.982 0.302 0.012 0.001

Menu X
Choice X X

Observations 12297 12297 12297 12297 12297 12297
F-statistic 0.00 643.48 458.31 44.96 190.90 183.46
p-value 0.00 0.00 0.00 0.00 0.00

R2 adjusted 0.0946 0.1004 0.1027 0.1100 0.1179
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E. Choice Overload, Attraction Effect, and Simulation Results

E.1. Choice Overload and Attraction Effect

In this section we examine whether there is evidence of choice overload and attraction effect in
the sample. We focus on these two effects because: (i) they have been observed at the individual
level, see Rieskamp et al. (2006); (ii) choice overload cannot be rationalized by any model that we
are considering; while (iii) attraction effect can be accommodated by LA, it cannot be explained by
other consideration set rules examined in this paper. Because of sampling variability, any evidence
of choice overload and attraction effect in finite sample may not imply that the underlying stochastic
choice rule is also consistent with choice overload and attraction effect. Next section shows that,
in finite samples, datasets generated by utility maximizing individuals may still exhibit choice
overload. Nonetheless, the magnitude of the finite sample choice overload can be informative.

Mediating choice with consideration sets allows the DM to simplify her choice problem. Therefore,
if DMs mediate choice with consideration sets, it is not expected that the problem becomes
overwhelming as the choice set size increases. That is, if DMs are indeed simplifying their choice
problem, then it is not expected that the probability of considering something in the menu decreases
monotonically with the size of the menu. Formally, we say that there is evidence of choice overload
if the probability of choosing the outside option increases when new alternatives are added to the
choice set.

Definition 10 (Choice Overload (CO)). We say there is evidence of choice overload if for some
A ∈ A and some a ∈ A it is the case that p(o, A) > p(o, A \ {a}), where o denotes the outside
option.

The results for the sample relative frequencies P̂ are summarized in Table 16. Intuitively, there
is evidence of choice overload if bigger choice sets drive decision makers to not consider any element
in the choice set and choose the outside option. There is finite sample evidence of choice overload at
all attention costs. Evidence for choice overload seems stronger for choice sets of 3 or 4 alternatives.
However, it is possible that the evidence of choice overload is an artifact of sample variability. In
fact, the mean intensity of the CO violations is below 0.03 for all cost levels which is arguably
small. Consistent with this observation, in Section 4 we find statistical evidence against choice
overload on the population level.

Attraction effect instead refers to the effect of an added alternative on the probability of choosing
another alternative. Attraction effect is incompatible with RUM, MM, and RCG, but it can be
explained by LA. Formally,

Definition 11 (Attraction Effect (AE)). We say that there is evidence for the attraction effect if
for some A ∈ A, a ∈ A, and x /∈ A

p(a,A ∪ {x}) > p(a,A) .
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Table 16 – Evidence for Choice overload in Sample For any pair of menus A, A \ {a} the
magnitude of deviation is defined as (p̂(o,A)− p̂(o,A \ {a})) if positive, 0 otherwise. Mean
refers to the average magnitude of deviations and Std. Dev as the standard deviation of
the magnitudes of deviations across all menu pairs of the form A, A \ {a}. Proportion is
the percentage of CO inequalities that are violated in sample.

All A |A| = 5 |A| = 4 |A| = 3 |A| = 2

Pool Proportion 0.2933 0.6500 0.3000
Mean 0.0098 0.0261 0.0071

Std. Dev 0.0189 0.0241 0.0160

Low Proportion 0.2267 0.6000 0.1667
Mean 0.0081 0.0238 0.0043

Std. Dev 0.0196 0.0288 0.0140

Medium Proportion 0.3867 0.4000 0.7500 0.3333 0.1000
Mean 0.0175 0.0040 0.0406 0.0138 0.0036

Std. Dev 0.0276 0.0060 0.0344 0.0232 0.0110

High Proportion 0.2133 0.5000 0.2000
Mean 0.0098 0.0214 0.0103

Std. Dev 0.0244 0.0276 0.0292

Table 17 – Attraction Effect in Sample Deviations from regularity supporting AE are given
by p̂(a,A ∪ {x})− p̂(a,A) if positive, 0 otherwise. Mean and Std Dev are the mean and
standard deviations of the magnitude of deviations across the 140 possible comparisons
(a,A ∪ {x}), (a,A). Proportion is the proportion of inequalities that evidence AE.

Decoy
x = 1 x = 2 x = 3 x = 4 x = 5

Pool Proportion 0.1071 0.0357 0.1071 0.0741
Mean 0.0121 0.0035 0.0251 0.0155

Std. Dev 0.0065 0.0239 0.0090

Low Proportion 0.2500 0.0357 0.1429 0.1786 0.0714
Mean 0.0239 0.0325 0.0215 0.0362 0.0176

Std. Dev 0.0166 0.0187 0.0196 0.0012

Medium Proportion 0.1429 0.1786 0.1429 0.0714
Mean 0.0114 0.0419 0.0497 0.0324

Std. Dev 0.0100 0.0350 0.0365 0.0007

High Proportion 0.0714 0.0714 0.1786 0.1429 0.1786
Mean 0.0259 0.0164 0.0174 0.0232 0.0306

Std. Dev 0.0264 0.0176 0.0152 0.0152 0.0236
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Table 17 summarizes the evidence for attraction effect on the relative choice frequencies P̂ .
Results show that the evidence for the attraction effect is weaker, and almost insignificant when the
alternative introduced as a potential decoy is lottery 2. The attraction effect seems stronger, for
the medium cost. However, the evidence is not conclusive at this point without a proper statistic
analysis. We discuss the evidence for attraction effect in Section 4, finding statistical support for it
only for intermediate costs of consideration.

E.2. Small Samples and Sampling Variability

The data exhibits evidence of choice overload, however it might be just the result of sampling
variability in finite samples. Next we present a simple example where the realization of a probability
rule consistent with RUM exhibits choice overload in small samples.

Example 4 (Choice overload for RUM data). Let P be a probabilistic choice rule that is consistent
with RUM over {a, b} ∪ {o} and is such that p(o, {a}) = 1

2 and p(o, {a, b}) = 1
4 . Assume that

the dataset consists of two observations: a is chosen from {a, o}, and o is chosen from {a, b, o}.
Based on this data the estimated probability rule is given by p̂(o, {a}) = 0 and p̂(o, {a, b}) = 1.
These choice frequencies exhibit choice overload (adding alternative b to the choice set boosts the
probability of the outside option), and may lead to rejection of RUM if one does not take into
account sample variability.

This simple example demonstrates the importance of statistical testing. In the limit, if the data
is generated by a model that satisfies regularity, all evidence of choice overload should dissipate.
However, considering two observations is not restrictive. To provide some Monte Carlo evidence
about spurious occurrences of choice overload or attraction effect in finite samples, we simulate
behavior for N individuals choosing from choice sets as in our experiment.

In particular, DMs are assumed to be utility maximizers over X∪{o}. We simulated behavior for
different numbers of observations and different levels of heterogeneity. A total of 1000 repetitions for
2, 5, 10, 50, 100 and 200 different preference orders (uniformly picked at random) were considered.54

Table 18 presents the results of these simulations that are summarized in Figure 13.
The results show that, as the number of observations increases, the evidence for choice overload

dissipates for all levels of heterogeneity. It is important to note than our pooled sample is of
12297; and the sample for each attention cost is of 4099, which implies that choice overload should
dissipate if the underlying population rule is consistent with the L-HRC model.

54We also conducted this exercise with nonuniform distributions over preference orders. The results a qualitatively
the same.
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Table 18 – Simulations under RUM and evidence of choice overload with |X| = 5

Number preference relations
2 5 10 50 100 200

N Proportion of CO

100 0.814 0.972 0.996 1.000 1.000 1.000
200 0.802 0.981 0.999 1.000 1.000 1.000
500 0.815 0.976 1.000 1.000 1.000 1.000
1000 0.810 0.980 1.000 1.000 1.000 1.000
5000 0.806 0.974 0.997 0.990 0.991 0.985
10000 0.818 0.975 0.997 0.966 0.923 0.901
15000 0.808 0.976 0.997 0.918 0.837 0.751

N Total Magnitude

100 4.794 7.185 7.855 8.614 8.524 8.520
200 3.043 4.677 4.905 5.362 5.304 5.230
500 1.829 2.446 2.518 2.392 2.326 2.300
1000 1.234 1.660 1.544 1.249 1.212 1.180
5000 0.553 0.716 0.553 0.226 0.177 0.148
10000 0.388 0.505 0.368 0.105 0.065 0.046
15000 0.315 0.411 0.306 0.068 0.034 0.022

N Avg. Marginal Magnitude

100 0.056 0.087 0.095 0.106 0.105 0.105
200 0.032 0.053 0.057 0.063 0.063 0.062
500 0.018 0.026 0.028 0.027 0.026 0.026
1000 0.012 0.018 0.017 0.014 0.013 0.013
5000 0.005 0.007 0.006 0.003 0.002 0.002
10000 0.004 0.005 0.004 0.001 0.001 0.001
15000 0.003 0.004 0.003 0.001 0.000 0.000
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Figure 13 – Choice overload for RUM DMs - LogScale

F. Performance of the Test

In this section we study the performance of our test in terms of statistical power. We are
going to test the null hypothesis of LA-HRC when the true choice process presents choice overload.
We consider behavior arising from a mixed population. A fraction λ ∈ [0, 1] of the population is
consistent with MM-HRC with γ(x) = 1/2 for all x ∈ X and preferences consistent with expected
utility maximization. The remaining fraction, λ, follows simple heuristics such the DM chooses
outside option with probability proportional to the cardinality of the set. If she decides to pay
attention to the menu, then she chooses uniformly at random from it. The process is then consistent
with the following stochastic choice rule

p(a,A) = λpMM-HRC(a,A) + (1− λ)pCO(a,A) (1)

where pMM-HRC(a,A) is consistent with MM-HRC with (mMM, π) and π(�) = 1/10 for all �∈
REU(X); and

pCO(o, A) = |A|+ 1
|X|+ 1 and pCO(a,A) = 1− pCO(o, A)

|A|
.

The assumed process implies that a fraction 1− λ of the population exhibits choice overload.55

55This process may intuitively arise when a DM that faced with a choice set only knows the size of the choice set and
the alternatives in the grand set X. Knowing about the alternatives implies paying a cost c per alternative. Assume
that preferences over information are modelled by a willingness to pay attention variable, w, that is distributed
uniformly in [0, 1]. Then, given a choice set realization, after knowing |A| DM i decides to pay attention to choice
set A if wi > |A| × c . This implies that the DM pays attention and decide in the interior of the set with probability∑
a∈A p(a,A) = 1− c |A|; and p(o,A) = c |A|.
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Table 19 – The table displays the proportion of rejections at the 90 percent and 95 percent con-
fidence levels for LA-HRC with EU preferences. Sample size=4000. Number of MC
replications=200.

Confidence level
Process 90% 95%

λ = 0.25 0.990 0.940
λ = 0.50 0.870 0.705
λ = 0.75 0.680 0.465

As the proportion of the population that exhibits choice overload increases so should increase
the probability of rejecting the null that population behavior is generated by L-HRC. On the other
extreme, when λ = 1 we should not reject the model. In particular, for any λ < 32/39 the process
defined by equation (1) exhibits choice overload. However, for high values of λ the magnitude of
this effect may not be significant to reject L-HRC.

Table 19 presents the results for power simulations for sample size 4000 and λ ∈ {0.25, 0.50, 0.75}.
For 200 replication the table displays the proportion of simulations that are rejected at the 90
percent and 95 percent confidence levels. As expected, the fraction of rejections is bigger for smaller
values of λ. For λ = 0.25 the rejection rate is 99 percent. We observe that at comparable sample
size to our experiment the mixed process is rejected with power close to 1 when the choice overload
fraction of DMs is moderate.
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G. Experiment Instructions

Figure 14 – Instructions page 1

Figure 15 – Instructions page 2
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Figure 16 – Instructions page 3

Figure 17 – Instructions page 4

67



Figure 18 – Instructions page 5

Figure 19 – Instructions page 6
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Figure 20 – Instructions page 7

Figure 21 – Instructions page 8
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Figure 22 – Instructions page 9

Figure 23 – Instructions page 10
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Figure 24 – Instructions page 11

Figure 25 – Instructions page 12
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Figure 26 – Instructions page 13

Figure 27 – Instructions page 14
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